Within and between Whorls: Comparative Transcriptional Profiling of Aquilegia and Arabidopsis
نویسندگان
چکیده
BACKGROUND The genus Aquilegia is an emerging model system in plant evolutionary biology predominantly because of its wide variation in floral traits and associated floral ecology. The anatomy of the Aquilegia flower is also very distinct. There are two whorls of petaloid organs, the outer whorl of sepals and the second whorl of petals that form nectar spurs, as well as a recently evolved fifth whorl of staminodia inserted between stamens and carpels. METHODOLOGY/PRINCIPAL FINDINGS We designed an oligonucleotide microarray based on EST sequences from a mixed tissue, normalized cDNA library of an A. formosa x A. pubescens F2 population representing 17,246 unigenes. We then used this array to analyze floral gene expression in late pre-anthesis stage floral organs from a natural A. formosa population. In particular, we tested for gene expression patterns specific to each floral whorl and to combinations of whorls that correspond to traditional and modified ABC model groupings. Similar analyses were performed on gene expression data of Arabidopsis thaliana whorls previously obtained using the Ath1 gene chips (data available through The Arabidopsis Information Resource). CONCLUSIONS/SIGNIFICANCE Our comparative gene expression analyses suggest that 1) petaloid sepals and petals of A. formosa share gene expression patterns more than either have organ-specific patterns, 2) petals of A. formosa and A. thaliana may be independently derived, 3) staminodia express B and C genes similar to stamens but the staminodium genetic program has also converged on aspects of the carpel program and 4) staminodia have unique up-regulation of regulatory genes and genes that have been implicated with defense against microbial infection and herbivory. Our study also highlights the value of comparative gene expression profiling and the Aquilegia microarray in particular for the study of floral evolution and ecology.
منابع مشابه
Fungal Infection Alters Phosphate Level and Phosphatase Profiles in Arabidopsis
Phosphorus (P), in the form of phosphate ion (Pi), is a vital element contributing in biomolecule structures, metabolic reactions, signaling pathways and energy transfer within the living cells. The objective of the present study was to assess the influence of fungal infection on Pi metabolism in compare to the effects of phosphate stress in Arabidopsis. Quantification of total P contents showe...
متن کاملIdentification of conserved Aquilegia coerulea microRNAs and their targets.
Aquilegia is an emerging model organism that is phylogenetically intermediate between the core eudicot and monocot models, Arabidopsis and Oryza. In this study, we have used a comparative genomics approach to identify 45 Aquilegia microRNAs that comprise 20 separate plant microRNA families. We have predicted 84 targets of these newly identified Aquilegia microRNAs including transcription factor...
متن کاملElaboration of B gene function to include the identity of novel floral organs in the lower eudicot Aquilegia.
The basal eudicot Aquilegia (columbine) has an unusual floral structure that includes two morphologically distinct whorls of petaloid organs and a clearly differentiated fifth organ type, the staminodium. In this study, we have sought to determine how Aquilegia homologs of the B class genes APETALA3 (AP3) and PISTILLATA (PI) contribute to these novel forms of organ identity. Detailed expression...
متن کاملCorrection: Metabolomic Profiling of the Nectars of Aquilegia pubescens and A. Canadensis
There is an error in the title. The correct title is: Metabolomic Profiling of the Nectars of Aquilegia pubescens and A. canadensis. The correct citation is: Noutsos C, Perera AM, Nikolau BJ, Seaver SMD, Ware DH (2015) Metabolomic Profiling of the Nectars of Aquilegia pubescens and A. canadensis. PLoS ONE 10(5): e0124501. doi:10.1371/journal.pone.0124501 The images for Figs 3 and 4 are incorrec...
متن کاملLEUNIG and SEUSS co-repressors regulate miR172 expression in Arabidopsis flowers.
Central to the ABCE model of flower development is the antagonistic interaction between class A and class C genes. The molecular mechanisms underlying the A-C antagonism are not completely understood. In Arabidopsis thaliana, miR172 is expressed in the inner floral whorls where it downregulates the class A gene APETALA 2 (AP2). However, what controls this predominantly inner whorl-specific expr...
متن کامل