The role of isoforms in the evolution of cryptic coloration in Peromyscus mice.

نویسندگان

  • Ricardo Mallarino
  • Tess A Linden
  • Catherine R Linnen
  • Hopi E Hoekstra
چکیده

A central goal of evolutionary biology is to understand the molecular mechanisms underlying phenotypic adaptation. While the contribution of protein-coding and cis-regulatory mutations to adaptive traits has been well documented, additional sources of variation - such as the production of alternative RNA transcripts from a single gene, or isoforms - have been understudied. Here, we focus on the pigmentation gene Agouti, known to express multiple alternative transcripts, to investigate the role of isoform usage in the evolution of cryptic colour phenotypes in deer mice (genus Peromyscus). We first characterize the Agouti isoforms expressed in the Peromyscus skin and find two novel isoforms not previously identified in Mus. Next, we show that a locally adapted light-coloured population of P. maniculatus living on the Nebraska Sand Hills shows an upregulation of a single Agouti isoform, termed 1C, compared with their ancestral dark-coloured conspecifics. Using in vitro assays, we show that this preference for isoform 1C may be driven by isoform-specific differences in translation. In addition, using an admixed population of wild-caught mice, we find that variation in overall Agouti expression maps to a region near exon 1C, which also has patterns of nucleotide variation consistent with strong positive selection. Finally, we show that the independent evolution of cryptic light pigmentation in a different species, P. polionotus, has been driven by a preference for the same Agouti isoform. Together, these findings present an example of the role of alternative transcript processing in adaptation and demonstrate molecular convergence at the level of isoform regulation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

I-16: Tubulin Reversible Acetylation – Driving The Moves and The Moves Behind The Drive

Background Asthenozoospermia accounts for almost 50% of the cases of male infertility. Our study investigating phosphoproteins differentially expressed in asthenozoosperm has identified the phosphoproteins relevant to sperm motility and the signature molecules likely to be altered in asthenozoospermia. The 66 phosphoproteins differentially expressed included four alpha tubulin isoforms which we...

متن کامل

Laminar Organization of Cerebral Cortex in Transforming Growth Factor Beta Mutant Mice

Transforming growth factor betas (TGF?s) are one of the most widespread and versatile cytokines. The three mammalian TGF? isoforms, ?1, ?2, and ?3, and their receptors regulate proliferation of neuronal precursors as well as survival and differentiation in neurons of developing and adult nervous system. Functions of TGF?s has a wide spectrum ranging from regulating cell proliferation and differ...

متن کامل

O-12: Tubulin Reversible Acetylation – Driving The Moves and The Moves Behind The Drive

Background Asthenozoospermia accounts for almost 50% of the cases of male infertility. Our study investigating phosphoproteins differentially expressed in asthenozoosperm has identified the phosphoproteins relevant to sperm motility and the signature molecules likely to be altered in asthenozoospermia. The 66 phosphoproteins differentially expressed included four alpha tubulin isoforms which we...

متن کامل

Spiny Mice Modulate Eumelanin to Pheomelanin Ratio to Achieve Cryptic Coloration in “Evolution Canyon,” Israel

BACKGROUND Coat coloration in mammals is an explicit adaptation through natural selection. Camouflaging with the environment is the foremost evolutionary drive in explaining overall coloration. Decades of enquiries on this topic have been limited to repetitive coat color measurements to correlate the morphs with background/habitat blending. This led to an overwhelming endorsement of concealing ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Molecular ecology

دوره 26 1  شماره 

صفحات  -

تاریخ انتشار 2017