Competitive Influence Maximization in Social Networks

نویسندگان

  • Shishir Bharathi
  • David Kempe
  • Mahyar Salek
چکیده

Social networks often serve as a medium for the diffusion of ideas or innovations. An individual’s decision whether to adopt a product or innovation will be highly dependent on the choices made by the individual’s peers or neighbors in the social network. In this work, we study the game of innovation diffusion with multiple competing innovations such as when multiple companies market competing products using viral marketing. Our first contribution is a natural and mathematically tractable model for the diffusion of multiple innovations in a network. We give a (1−1/e) approximation algorithm for computing the best response to an opponent’s strategy, and prove that the “price of competition” of this game is at most 2. We also discuss “first mover” strategies which try to maximize the expected diffusion against perfect competition. Finally, we give an FPTAS for the problem of maximizing the influence of a single player when the underlying graph is a tree.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Influence Blocking Maximization in Social Networks under the Competitive Linear Threshold Model

In many real-world situations, different and often opposite opinions, innovations, or products are competing with one another for their social influence in a networked society. In this paper, we study competitive influence propagation in social networks under the competitive linear threshold (CLT) model, an extension to the classic linear threshold model. Under the CLT model, we focus on the pr...

متن کامل

Influence Blocking Maximization in Social Networks under the Competitive Linear Threshold Model Technical Report

In many real-world situations, different and often opposite opinions, innovations, or products are competing with one another for their social influence in a networked society. In this paper, we study competitive influence propagation in social networks under the competitive linear threshold (CLT) model, an extension to the classic linear threshold model. Under the CLT model, we focus on the pr...

متن کامل

Threshold Models for Competitive Influence in Social Networks

The problem of influence maximization deals with choosing the optimal set of nodes in a social network so as to maximize the resulting spread of a technology (opinion, productownership, etc.), given a model of diffusion of influence in a network. A natural extension of this would be to introduce a competitive setting, in which the goal is to maximize the spread of our technology in the presence...

متن کامل

A Mechanism Design Approach for Influence Maximization

With the proliferation of online social networks (OSNs), the characterization of diffusion processes and influence maximization over such processes is a problem of relevance and importance. Although several algorithmic frameworks for identifying influential nodes exist in literature, there is a paucity of literature in the setting of competitive influence. In this paper, we present a novel mech...

متن کامل

Reaction Paper Influence Maximization in Social Networks: A Competitive Perspective

Social Network Analysis has today fast developed into one of the most important tools used for the study of relations by incorporating network theory. By representing the nodes of the network as the actors (people, countries, goods etc.) and the links between them as the relationships, researchers have been able to develop and study ties between the entities such as friendship, rivalry, organiz...

متن کامل

Real-time topic-aware influence maximization using preprocessing

Background Influence maximization is the task of finding a set of seed nodes in a social network such that the influence spread of these seed nodes based on certain influence diffusion model is maximized. Topic-aware influence diffusion models have been recently proposed to address the issue that influence between a pair of users are often topic-dependent and information, ideas, innovations etc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007