A comparative study on finite elements for capturing strong discontinuities: E-FEM vs X-FEM
نویسنده
چکیده
A comparative study on finite elements for capturing strong discontinuities by means of elemental (E-FEM) or nodal enrichments (XFEM) is presented. Based on the same constitutive model (continuum damage) and linear elements (triangles and tetrahedra) optimized implementations of both types of enrichments in the same non-linear code are tested for a representative set of 2D and 3D crack propagation examples. It is shown that both methods provide the same qualitative and quantitative results for enough refined meshes. For the performed tests, E-FEM exhibited, in general, a higher accuracy, mostly for coarse meshes, whereas, convergence rate with mesh refinement, which is super-linear, showed slightly higher for X-FEM. As for the computational costs for single crack modelling X-FEM showed, depending on the case, from 1.1 to about 2.5 times more expensive than E-FEM. For multiple cracks, the computational cost of E-FEM keeps constant, whereas the cost associated to X-FEM increases linearly with the number of modelled cracks. 2005 Elsevier B.V. All rights reserved.
منابع مشابه
استفاده از دستگاه مختصات متعامد محلی در مدل کردن ترک دو بعدی به روش المان محدود توسعه یافته
The extended finite element method (X-FEM) is a numerical method for modeling discontinuties, such as cracks, within the standard finite element framework. In X-FEM, special functions are added to the finite element approximation. For crack modeling in linear elasticity, appropriate functions are used for modeling discontinuties along the crack length and simulating the singularity in the crack...
متن کاملA NURBS-enhanced Discontinuity-Enriched Finite Element Method
Generalized finite element methods have proved a great potential in the mesh-independent modeling of both weak and strong discontinuities, such as the ones encountered when treating materials with inclusions or cracks. By removing the constraint of a conforming mesh, more freedom is offered to modeling exact geometries by means of splines. However, very few studies have been published which com...
متن کاملModeling quasi-static crack growth with the extended finite element method Part I: Computer implementation
The extended finite element method (X-FEM) is a numerical method for modeling strong (displacement) as well as weak (strain) discontinuities within a standard finite element framework. In the X-FEM, special functions are added to the finite element approximation using the framework of partition of unity. For crack modeling in isotropic linear elasticity, a discontinuous function and the two-dim...
متن کاملSimulation of complex microstructural geometries using X-FEM and the application to solder joint lifetime prediction
In electronic devices solder joints form a mechanical as well as an electrical connection between the circuit board and the component (e.g. a chip or a resistor). Temperature variations occurring during field use cause crack initiation and crack growth inside the joints. Accurate prediction of the lifetime requires a method to simulate the damage process based on microstructural properties. Num...
متن کاملFEM SIMULATION OF NON-AXISYMMETRIC STRETCH FLANGE FORMING OF ALUMINUM ALLOY 5052 BASED ON SHELL TYPE ELEMENTS
Finite element simulation of stretch flanging process was carried out in order to investigate the effect of process parameters on maximum thinning (%) in stretch flanging process. Influences of initial flange length, punch die clearance, width of sheet metal blank and blank holding force were investigated on maximum thinning (%). Finite element simulation was done using FEM software package ABA...
متن کامل