Allosteric Regulation of the Rotational Speed in a Light-Driven Molecular Motor
نویسندگان
چکیده
The rotational speed of an overcrowded alkene-based molecular rotary motor, having an integrated 4,5-diazafluorenyl coordination motif, can be regulated allosterically via the binding of metal ions. DFT calculations have been used to predict the relative speed of rotation of three different (i.e., zinc, palladium, and platinum) metal dichloride complexes. The photochemical and thermal isomerization behavior of these complexes has been studied in detail using UV-vis and 1H NMR spectroscopy. Our results confirm that metal coordination induces a contraction of the diazafluorenyl lower half, resulting in a reduction of the steric hindrance in the "fjord" region of the molecule, which causes an increase of the rotational speed. Importantly, metal complexation can be accomplished in situ and is found to be reversible upon the addition of a competing ligand. Consequently, the rotational behavior of these molecular motors can be dynamically controlled with chemical additives.
منابع مشابه
Numerical Prediction of Stator Diameter Effect on the Output Torque of Ultrasonic Traveling-wave Motor, using Finite Elements Simulation
Nowadays, piezoelectric materials have wide applications in various industries. Therefore, investigation of these materials and their applications has a special importance. In this paper first, the natural frequencies of a traveling-wave piezoelectric motor are achieved, using finite elements simulations. Then, applying an alternative electrical voltage to the piezoelectric ring, a traveling wa...
متن کاملFine tuning of the rotary motion by structural modification in light-driven unidirectional molecular motors.
The introduction of bulky substituents at the stereogenic center of light-driven second-generation molecular motors results in an acceleration of the speed of rotation. This is due to a more strained structure with elongated C=C bonds and a higher energy level of the ground state relative to the transition state for the rate-limiting thermal isomerization step. Understanding the profound influe...
متن کاملAdaptive Voltage-based Control of Direct-drive Robots Driven by Permanent Magnet Synchronous Motors
Tracking control of the direct-drive robot manipulators in high-speed is a challenging problem. The Coriolis and centrifugal torques become dominant in the high-speed motion control. The dynamical model of the robotic system including the robot manipulator and actuators is highly nonlinear, heavily coupled, uncertain and computationally extensive in non-companion form. In order to overcome thes...
متن کاملSeven-Level Direct Torque Control of Induction Motor Based on Artificial Neural Networks with Regulation Speed Using Fuzzy PI Controller
In this paper, the author proposes a sensorless direct torque control (DTC) of an induction motor (IM) fed by seven-level NPC inverter using artificial neural networks (ANN) and fuzzy logic controller. Fuzzy PI controller is used for controlling the rotor speed and ANN applied in switching select stator voltage. The control method proposed in this paper can reduce the torque, stator flux and to...
متن کاملVibration Analysis of an Air Compressor Based on a Hypocycloidal Mechanism: an Experimental Study
In this paper, the experimental vibration analysis of a single cylinder air compressor based on a hypocycloid straight line mechanism (HSM) is investigated. The HSM mechanism uses planetary gears to convert rotational motion to purely linear motion. In the conventional air compressor, the slider- crank mechanism is replaced by the HSM mechanism with appropriate counterweights. The constructed s...
متن کامل