Implementing the asymptotically fast version of the elliptic curve primality proving algorithm

نویسنده

  • François Morain
چکیده

The elliptic curve primality proving (ECPP) algorithm is one of the current fastest practical algorithms for proving the primality of large numbers. Its running time currently cannot be proven rigorously, but heuristic arguments show that it should run in time Õ((logN)5) to prove the primality of N . An asymptotically fast version of it, attributed to J. O. Shallit, is expected to run in time Õ((logN)4). We describe this version in more detail, leading to actual implementations able to handle numbers with several thousands of decimal digits.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Implementing the Asymptotically Fast Version of the Elliptic Curve Primality Proving Algorithm Less Prelimimary Version 040825

The elliptic curve primality proving algorithm is one of the fastest practical algorithms for proving the primality of large numbers. Its running time cannot be proven rigorously, but heuristic arguments show that it should run in time Õ((logN)) to prove the primality of N . An asymptotically fast version of it, attributed to J. O. Shallit, runs in time Õ((logN)). The aim of this article is to ...

متن کامل

Primality Proving via One round in Ecpp and One Iteration

On August 2002, Agrawal, Kayal and Saxena announced the first deterministic and polynomial time primality testing algorithm. For an input n, the AKS algorithm runs in heuristic time Õ(log n). Verification takes roughly the same amount of time. On the other hand, the Elliptic Curve Primality Proving algorithm (ECPP) runs in random heuristic time Õ(log n) ( Õ(log n) if the fast multiplication is ...

متن کامل

Cyclotomy Primality Proving

Two rational primes p, q are called dual elliptic if there is an elliptic curve E mod p with q points. They were introduced as an interesting means for combining the strengths of the elliptic curve and cyclotomy primality proving algorithms. By extending to elliptic curves some notions of galois theory of rings used in the cyclotomy primality tests, one obtains a new algorithm which has heurist...

متن کامل

Computing the cardinality of CM elliptic curves using torsion points

Let E/Q be an elliptic curve having complex multiplication by a given quadratic order of an imaginary quadratic field K. The field of definition of E is the ring class field Ω of the order. If the prime p splits completely in Ω, then we can reduce E modulo one the factors of p and get a curve E defined over Fp. The trace of the Frobenius of E is known up to sign and we need a fast way to find t...

متن کامل

Distributed Primality Proving and the Primality of (23539+1)/3

We explain how the Elliptic Curve Primality Proving algorithm can be implemented in a distributed way. Applications are given to the certiication of large primes (more than 500 digits). As a result, we describe the successful attempt at proving the primality of the 1065-digit (2 3539 +1)=3, the rst ordinary Titanic prime.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Math. Comput.

دوره 76  شماره 

صفحات  -

تاریخ انتشار 2007