Adenosine primes the opening of mitochondrial ATP-sensitive potassium channels: a key step in ischemic preconditioning?

نویسندگان

  • T Sato
  • N Sasaki
  • B O'Rourke
  • E Marbán
چکیده

BACKGROUND Adenosine can initiate ischemic preconditioning, and mitochondrial ATP-sensitive potassium (K(ATP)) channels have emerged as the likely effectors. We sought to determine the mechanistic interactions between these 2 observations. METHODS AND RESULTS The mitochondrial flavoprotein oxidation induced by diazoxide (100 micromol/L) was used to quantify mitochondrial K(ATP) channel activity in intact rabbit ventricular myocytes. Adenosine (100 micromol/L) increased mitochondrial K(ATP) channel activity and abbreviated the latency to mitochondrial K(ATP) channel opening. These potentiating effects were entirely prevented by the adenosine receptor antagonist 8-(p-sulfophenyl)-theophylline (100 micromol/L) or by the protein kinase C inhibitor polymyxin B (50 micromol/L). The effects of adenosine and diazoxide reflected mitochondrial K(ATP) channel activation, because they could be blocked by the mitochondrial K(ATP) channel blocker 5-hydroxydecanoate (500 micromol/L). In a cellular model of simulated ischemia, adenosine mitigated cell injury; this cardioprotective effect was blocked by 5-hydroxydecanoate but not by the surface-selective K(ATP) channel blocker HMR1098. Moreover, adenosine augmented the cardioprotective effect of diazoxide. A quantitative model of mitochondrial K(ATP) channel gating reproduced the major experimental findings. CONCLUSIONS Our results support the hypothesis that adenosine receptor activation primes the opening of mitochondrial K(ATP) channels in a protein kinase C-dependent manner. The findings provide tangible links among various key elements in the preconditioning cascade.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

M itochondrial K channels : role in cardioprotectionATP

The role of the mitochondrial ATP-sensitive potassium channel (mK ) in ischemic preconditioning and cardioprotection is reviewed. ATP A great deal of accumulated evidence implicatese opening of this channel as an important step in the anti-infarct effect of ischemic preconditioning. Recent studies, however, reveal that channel opening can actually serve as a signal transduction element. Data in...

متن کامل

Mitochondrial ATP-sensitive potassium channels inhibit apoptosis induced by oxidative stress in cardiac cells.

Mitochondria can either enhance or suppress cell death. Cytochrome c release from mitochondria and depolarization of the mitochondrial membrane potential (DeltaPsi) are crucial events in triggering apoptosis. In contrast, activation of mitochondrial ATP-sensitive potassium (mitoK(ATP)) channels prevents lethal ischemic injury in vivo, implicating these channels as key players in the process of ...

متن کامل

Neuronal preconditioning by inhalational anesthetics: evidence for the role of plasmalemmal adenosine triphosphate-sensitive potassium channels.

BACKGROUND Ischemic preconditioning is an important intrinsic mechanism for neuroprotection. Preconditioning can also be achieved by exposure of neurons to K+ channel-opening drugs that act on adenosine triphosphate-sensitive K+ (K(ATP)) channels. However, these agents do not readily cross the blood-brain barrier. Inhalational anesthetics which easily partition into brain have been shown to pre...

متن کامل

Early opening of sarcolemmal ATP-sensitive potassium channels is not a key step in PKC-mediated cardioprotection.

ATP-sensitive potassium (KATP) channels are abundantly expressed in the myocardium. Although a definitive role for the channel remains elusive they have been implicated in the phenomenon of cardioprotection, but the precise mechanism is unclear. We set out to test the hypothesis that the channel protects by opening early during ischemia to shorten action potential duration and reduce electrical...

متن کامل

Exercise preconditioning: review

It is estimated that by 2035, more than 130 million adults will suffer from various types of cardiovascular diseases. Therefore, it is very important to know the pathogens of cardiac diseases and investigate new treatments. Also, despite continuous progress in diagnosis, patient education, and risk factor management, myocardial infarction (MI) remains one of the most common causes of morbidity,...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Circulation

دوره 102 7  شماره 

صفحات  -

تاریخ انتشار 2000