A novel technique to solve nonlinear higher-index Hessenberg differential–algebraic equations by Adomian decomposition method
نویسنده
چکیده
Since 1980, the Adomian decomposition method (ADM) has been extensively used as a simple powerful tool that applies directly to solve different kinds of nonlinear equations including functional, differential, integro-differential and algebraic equations. However, for differential-algebraic equations (DAEs) the ADM is applied only in four earlier works. There, the DAEs are first pre-processed by some transformations like index reductions before applying the ADM. The drawback of such transformations is that they can involve complex algorithms, can be computationally expensive and may lead to non-physical solutions. The purpose of this paper is to propose a novel technique that applies the ADM directly to solve a class of nonlinear higher-index Hessenberg DAEs systems efficiently. The main advantage of this technique is that; firstly it avoids complex transformations like index reductions and leads to a simple general algorithm. Secondly, it reduces the computational work by solving only linear algebraic systems with a constant coefficient matrix at each iteration, except for the first iteration where the algebraic system is nonlinear (if the DAE is nonlinear with respect to the algebraic variable). To demonstrate the effectiveness of the proposed technique, we apply it to a nonlinear index-three Hessenberg DAEs system with nonlinear algebraic constraints. This technique is straightforward and can be programmed in Maple or Mathematica to simulate real application problems.
منابع مشابه
Adomian decomposition method for solution of differential-algebraic equations
Solutions of differential algebraic equations is considered by Adomian decomposition method. In E. Babolian, M.M. Hosseini [Reducing index and spectral methods for differential-algebraic equations, J. Appl. Math. Comput. 140 (2003) 77] and M.M. Hosseini [An index reduction method for linear Hessenberg systems, J. Appl. Math. Comput., in press], an efficient technique to reduce index of semi-exp...
متن کاملSOLUTION OF FUZZY DIFFERENTIAL EQUATIONS UNDER GENERALIZED DIFFERENTIABILITY BY ADOMIAN DECOMPOSITION METHOD
Adomian decomposition method has been applied to solve many functional equations so far. In this article, we have used this method to solve the fuzzy differential equation under generalized differentiability. We interpret a fuzzy differential equation by using the strongly generalized differentiability. Also one concrete application for ordinary fuzzy differential equation with fuzzy input data...
متن کاملA New Technique to Solve Higher Order Ordinary Differential equations
Modified Adomian decomposition method has been used intensively to solve linear and nonlinear singular boundary and initial value problems. It has been proved to be very efficient in generating series solutions of the problem under consideration under the assumption that such series solution exits. The method is illustrated by some examples of higher order ordinary equations systems and series ...
متن کاملA New Technique to Solve Higher Order Ordinary Differential equations
Modified Adomian decomposition method has been used intensively to solve linear and nonlinear singular boundary and initial value problems. It has been proved to be very efficient in generating series solutions of the problem under consideration under the assumption that such series solution exits. The method is illustrated by some examples of higher order ordinary equations systems and series ...
متن کاملAdomian decomposition method for solution of nonlinear differential algebraic equations
In [M.M. Hosseini, Adomian decomposition method with Chebyshev polynomials, Appl. Math. Comput., in press] an efficient modification of the Adomian decomposition method was presented by using Chebyshev polynomials. Also, in [M.M. Hosseini, Adomian decomposition method for solution of differential algebraic equations, J. Comput. Appl. Math., in press] solution of linear differential algebraic eq...
متن کامل