Statistical analysis of illness-death processes and semicompeting risks data.

نویسندگان

  • Jinfeng Xu
  • John D Kalbfleisch
  • Beechoo Tai
چکیده

In many instances, a subject can experience both a nonterminal and terminal event where the terminal event (e.g., death) censors the nonterminal event (e.g., relapse) but not vice versa. Typically, the two events are correlated. This situation has been termed semicompeting risks (e.g., Fine, Jiang, and Chappell, 2001, Biometrika 88, 907-939; Wang, 2003, Journal of the Royal Statistical Society, Series B 65, 257-273), and analysis has been based on a joint survival function of two event times over the positive quadrant but with observation restricted to the upper wedge. Implicitly, this approach entertains the idea of latent failure times and leads to discussion of a marginal distribution of the nonterminal event that is not grounded in reality. We argue that, similar to models for competing risks, latent failure times should generally be avoided in modeling such data. We note that semicompeting risks have more classically been described as an illness-death model and this formulation avoids any reference to latent times. We consider an illness-death model with shared frailty, which in its most restrictive form is identical to the semicompeting risks model that has been proposed and analyzed, but that allows for many generalizations and the simple incorporation of covariates. Nonparametric maximum likelihood estimation is used for inference and resulting estimates for the correlation parameter are compared with other proposed approaches. Asymptotic properties, simulations studies, and application to a randomized clinical trial in nasopharyngeal cancer evaluate and illustrate the methods. A simple and fast algorithm is developed for its numerical implementation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Semiparametric transformation models for semicompeting survival data.

Semicompeting risk outcome data (e.g., time to disease progression and time to death) are commonly collected in clinical trials. However, analysis of these data is often hampered by a scarcity of available statistical tools. As such, we propose a novel semiparametric transformation model that improves the existing models in the following two ways. First, it estimates regression coefficients and...

متن کامل

Accommodating informative dropout and death: a joint modelling approach for longitudinal and semicompeting risks data

Both dropout and death can truncate observation of a longitudinal outcome. Since extrapolation beyond death is often not appropriate, it is desirable to obtain the longitudinal outcome profile of a population given being alive. We propose a new likelihood-based approach to accommodating informative dropout and death by jointly modelling the longitudinal outcome and semi-competing event times of...

متن کامل

Additive Hazard Model with Additive Frailty for Semi-Competing Risks Data

We proposed an illness-death model with Lin and Ying's additive hazard and additive frailty for the regression analysis on semi-competing risks problem in a general morbidity/mortality process. Comparing with the Cox-type hazard, the additive hazard function is more natural and properly partitions the effect of the covariate on one transition into the other transition, internal consistency in t...

متن کامل

Regression modeling of semicompeting risks data.

Semicompeting risks data are often encountered in clinical trials with intermediate endpoints subject to dependent censoring from informative dropout. Unlike with competing risks data, dropout may not be dependently censored by the intermediate event. There has recently been increased attention to these data, in particular inferences about the marginal distribution of the intermediate event wit...

متن کامل

Meta-analysis for surrogacy: accelerated failure time models and semicompeting risks modeling.

There has been great recent interest in the medical and statistical literature in the assessment and validation of surrogate endpoints as proxies for clinical endpoints in medical studies. More recently, authors have focused on using metaanalytical methods for quantification of surrogacy. In this article, we extend existing procedures for analysis based on the accelerated failure time model to ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biometrics

دوره 66 3  شماره 

صفحات  -

تاریخ انتشار 2010