The Threshold of Protection from Liver-Stage Malaria Relies on a Fine Balance between the Number of Infected Hepatocytes and Effector CD8+ T Cells Present in the Liver

نویسندگان

  • Alexandra J Spencer
  • Rhea J Longley
  • Anita Gola
  • Marta Ulaszewska
  • Teresa Lambe
  • Adrian V S Hill
چکیده

Since the demonstration of sterile protection afforded by injection of irradiated sporozoites, CD8+ T cells have been shown to play a significant role in protection from liver-stage malaria. This is, however, dependent on the presence of an extremely high number of circulating effector cells, thought to be necessary to scan, locate, and kill infected hepatocytes in the short time that parasites are present in the liver. We used an adoptive transfer model to elucidate the kinetics of the effector CD8+ T cell response in the liver following Plasmodium berghei sporozoite challenge. Although effector CD8+ T cells require <24 h to find, locate, and kill infected hepatocytes, active migration of Ag-specific CD8+ T cells into the liver was not observed during the 2-d liver stage of infection, as divided cells were only detected from day 3 postchallenge. However, the percentage of donor cells recruited into division was shown to indicate the level of Ag presentation from infected hepatocytes. By titrating the number of transferred Ag-specific effector CD8+ T cells and sporozoites, we demonstrate that achieving protection toward liver-stage malaria is reliant on CD8+ T cells being able to locate infected hepatocytes, resulting in a protection threshold dependent on a fine balance between the number of infected hepatocytes and CD8+ T cells present in the liver. With such a fine balance determining protection, achieving a high number of CD8+ T cells will be critical to the success of a cell-mediated vaccine against liver-stage malaria.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Genetically attenuated parasite vaccines induce contact-dependent CD8+ T cell killing of Plasmodium yoelii liver stage-infected hepatocytes.

The production of IFN-gamma by CD8(+) T cells is an important hallmark of protective immunity induced by irradiation-attenuated sporozoites against malaria. Here, we demonstrate that protracted sterile protection conferred by a Plasmodium yoelii genetically attenuated parasite (PyGAP) vaccine was completely dependent on CD8(+) T lymphocytes but only partially dependent on IFN-gamma. We used liv...

متن کامل

Inhibition of nitric oxide interrupts the accumulation of CD8+ T cells surrounding Plasmodium berghei-infected hepatocytes.

The elimination of liver-stage malaria parasites by nitric oxide (NO)-producing hepatocytes is regulated by T cells. Both CD8+ and CD4+ T cells, which surround infected hepatocytes, are evident by 24 h after sporozoite challenge in Brown Norway rats previously immunized with irradiated Plasmodium berghei sporozoites. While the number of CD4+ T cells remained the same beyond 24 h postchallenge, ...

متن کامل

CD8+ T cells specific for a malaria cytoplasmic antigen form clusters around infected hepatocytes and are protective at the liver stage of infection.

Following Anopheles mosquito-mediated introduction into a human host, Plasmodium parasites infect hepatocytes and undergo intensive replication. Accumulating evidence indicates that CD8(+) T cells induced by immunization with attenuated Plasmodium sporozoites can confer sterile immunity at the liver stage of infection; however, the mechanisms underlying this protection are not clearly understoo...

متن کامل

Plasmodium cellular effector mechanisms and the hepatic microenvironment

Plasmodium falciparum malaria remains one of the most serious health problems globally. Immunization with attenuated parasites elicits multiple cellular effector mechanisms capable of eliminating Plasmodium liver stages. However, malaria liver stage (LS) immunity is complex and the mechanisms effector T cells use to locate the few infected hepatocytes in the large liver in order to kill the int...

متن کامل

Editorial: Breaking the cycle: attacking the malaria parasite in the liver

Plasmodium falciparum malaria remains one of the most serious health problems globally. Immunization with attenuated parasites elicits multiple cellular effector mechanisms capable of eliminating Plasmodium from the liver. However, malaria liver stage immunity is complex. The anatomic site of priming of naive Plasmodium-specific CD8 T cells, be it in the lymph nodes draining the site of Plasmod...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 198  شماره 

صفحات  -

تاریخ انتشار 2017