Forecasting Stationary Processes under Asymmetric Loss

نویسندگان

  • Hans-Dieter Heike
  • Matei Demetrescu
چکیده

This paper addresses estimation of general linear processes under the relevant loss function using autoregressive approximations. The estimators of the autoregressive parameters are shown to be consistent in the sense that the L1 norm of the distance to the respective true values converges in probability to zero. The assumptions on the order of the approximation and the moment requirements for the innovations of the general linear process are fairly mild. The L1 consistency is shown to be a sufficient condition for asymptotic validity of the forecasts based on such autoregressive approximations. Monte Carlo simulations illustrate the asymptotic results.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Comparison of Kullback-Leibler, Hellinger and LINEX with Quadratic Loss Function in Bayesian Dynamic Linear Models: Forecasting of Real Price of Oil

In this paper we intend to examine the application of Kullback-Leibler, Hellinger and LINEX loss function in Dynamic Linear Model using the real price of oil for 106 years of data from 1913 to 2018 concerning the asymmetric problem in filtering and forecasting. We use DLM form of the basic Hoteling Model under Quadratic loss function, Kullback-Leibler, Hellinger and LINEX trying to address the ...

متن کامل

Some New Methods for Prediction of Time Series by Wavelets

Extended Abstract. Forecasting is one of the most important purposes of time series analysis. For many years, classical methods were used for this aim. But these methods do not give good performance results for real time series due to non-linearity and non-stationarity of these data sets. On one hand, most of real world time series data display a time-varying second order structure. On th...

متن کامل

Training Artificial Nexjral Networks for Time Series Prediction Using Asymmetric Cost Functions

Artificial neural network theory generally minimises a standard statistical error, such as the sum of squared errors, to learn relationships fiom the presented data. However, applications in business have shown that real forecasting problems require alternative error measures. Errors, identical in magnitude, cause different costs. To reflect this, a set of asymmetric cost functions is proposed ...

متن کامل

Training Artificial Neural Networks for Time Series Prediction Using Asymmetric Cost Functions

Artificial neural network theory generally minimises a standard statistical error, such as the sum of squared errors, to learn relationships from the presented data. However, applications in business have shown that real forecasting problems require alternative error measures. Errors, identical in magnitude, cause different costs. To reflect this, a set of asymmetric cost functions is proposed ...

متن کامل

Theory and Algorithms for Forecasting Time Series

We present data-dependent learning bounds for the general scenario of non-stationary nonmixing stochastic processes. Our learning guarantees are expressed in terms of a datadependent measure of sequential complexity and a discrepancy measure that can be estimated from data under some mild assumptions. We also also provide novel analysis of stable time series forecasting algorithm using this new...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007