A model for the contractility of the cytoskeleton including the effects of stress-fibre formation and dissociation

نویسندگان

  • VIKRAM S. DESHPANDE
  • ROBERT M. MCMEEKING
  • ANTHONY G. EVANS
  • V. S. Deshpande
چکیده

A model for the contractility of cells is presented that accounts for the dynamic reorganization of the cytoskeleton. It is motivated by three key biochemical processes: (i) an activation signal that triggers actin polymerization and myosin phosphorylation, (ii) the tension-dependent assembly of the actin and myosin into stress fibres, and (iii) the cross-bridge cycling between the actin and the myosin filaments that generates the tension. Simple relations are proposed to model these coupled phenomena and a constitutive law developed for the activation and response of a single stress fibre. This law is generalized to twoand three-dimensional cytoskeletal networks by employing a homogenization analysis and a finite strain continuum model is developed. The key features of the model are illustrated by considering: (i) a single stress fibre on a series of supports and (ii) a two-dimensional square cell on four supports. The model is shown to be capable of predicting a variety of key experimentally established characteristics including: (i) the decrease of the forces generated by the cell with increasing support compliance, (ii) the influence of cell shape and boundary conditions on the development of structural anisotropy, and (iii) the high concentration of the stress fibres both at the focal adhesions and at the sites of localized applied tension. Moreover, consistent with the experimental findings, the model predicts that multiple activation signals are more effective at developing stress fibres than a single prolonged signal.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

I-6: Role of Actin Cytoskeleton during Mouse Sperm Acrosomal Exocytosis

Background: Mammalian sperm must undergo a process termed capacitation to become competent to fertilize an egg. Capacitation renders the sperm competent by priming the cells to undergo a rapid exocytotic event called acrosomal exocytosis that is stimulated by the zona pellucida (ZP) of the egg or progesterone. Over the years, several biochemical events have been associated with the capacitation...

متن کامل

Effect of Stress-Fiber Inclusion on the Local Stiffness of Cell Cytoskeleton Probed by AFM Indentation: Insights from a Discrete Network Model

In this paper, we analyze the effect of stress-fiber inclusion on the stiffness of an actin random network. To do this, use a discrete random network model to analyze the elastic response of this system in terms of apparent Young’s modulus. First, we showed that for a flat-ended cylindrical AFM indenter the total indentation force has a linear relation with the indentation depth and the indente...

متن کامل

Wave Propagation in Fibre-Reinforced Transversely Isotropic Thermoelastic Media with Initial Stress at the Boundary Surface

The reflection and transmission of thermoelastic plane waves at an imperfect boundary of two dissimilar fibre-reinforced transversely isotropic thermoelastic solid half-spaces under hydrostatic initial stress has been investigated. The appropriate boundary conditions are applied at the interface to obtain the reflection and transmission coefficients of various reflected and transmitted waves wi...

متن کامل

The formate and redox mechanisms of water-gas shift reaction on the surface of Ag: A nanocluster model based on DFT study

Two different possible mechanisms of water gas shift reaction including formate and redox mechanisms on the Ag5 cluster were investigated using DFT computations. All the elementary steps involved in both mechanisms were considered. It was observed that dissociation of H2Oads and OHads, as well as formation of CO2(ads), required activation e...

متن کامل

The simulation of stress fibre and focal adhesion development in cells on patterned substrates

The remodelling of the cytoskeleton and focal adhesion (FA) distributions for cells on substrates with micro-patterned ligand patches is investigated using a bio-chemo-mechanical model. We investigate the effect of ligand pattern shape on the cytoskeletal arrangements and FA distributions for cells having approximately the same area. The cytoskeleton model accounts for the dynamic rearrangement...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007