Reconfigurable Cooperative Control of Networked Lagrangian Systems Under Actuator Saturation Constraints
نویسندگان
چکیده
In this paper, a reconfigurable control strategy is proposed for state synchronization and tracking control of networked (electro-) mechanical Euler-Lagrange (EL) systems that are subject to input saturation constraints that may arise due to actuator faults or failures. The reconfigurable controller consists of three main parts. The first part, known as the nominal controller, is a distributed controller that is employed to guarantee global stability of the multiagent networked EL system provided that certain mild connectivity conditions are satisfied in absence or presence of actuator saturation constraints. The second part, known as the reconfigured controller, is a constrained nonlinear smooth distributed controller that has a different structure and gains from the nominal controller. This controller can preserve the overall control objectives in presence of actuator faults and actuator saturation constraints. The third part is a switching strategy between the nominal and the reconfigured controllers. Global stability as well as asymptotic convergence of the synchronization and the tracking errors to origin for switchings under certain conditions between the nominal and the reconfigured controllers with non-vanishing dwell-times for a fixed network topology are shown to be guaranteed. Simulation results are reported to demonstrate and validate the merits of the proposed controllers.
منابع مشابه
Stabilization of Networked Control Systems with Variable Delays and Saturating Inputs
In this paper, improved conditions for the synthesis of static state-feedback controller are derived to stabilize networked control systems (NCSs) subject to actuator saturation. Both of the data packet latency and dropout which deteriorate the performance of the closed-loop system are considered in the NCS model via variable delays. Two different techniques are employed to incorporate actuator...
متن کاملDiscrete-time network-based control under scheduling and actuator constraints
This paper is concerned with the solution bounds for discrete-time networked control systems via delay-dependent Lyapunov–Krasovskii methods. Solution bounds are widely used for systems with input saturation caused by actuator saturation or by the quantizers with saturation. The time-delay approach has been developed recently for the stabilization of continuous-time networked control systems un...
متن کاملManaging Performance Degradation in Fault Tolerant Control Systems
A fault tolerant control system design technique has been proposed and analyzed for managing performance degradation in the presence of multiple faults in actuators. The method is based on a control structure with model reference reconfigurable control design in an inner loop and command input adjustment in an outer loop. The reduced dynamic performance requirements in the presence of different...
متن کاملIncorporating Performance Degradation in Fault Tolerant Control System Design with Multiple Actuator Failures
A fault tolerant control system design technique has been proposed and analyzed for managing performance degradation in the presence of multiple faults in actuators. The method is based on a control structure with a model reference reconfigurable control design in an inner loop and command input adjustment in an outer loop. The reduced dynamic performance requirements in the presence of differe...
متن کاملDesign of Observer-based H∞ Controller for Robust Stabilization of Networked Systems Using Switched Lyapunov Functions
In this paper, H∞ controller is synthesized for networked systems subject to random transmission delays with known upper bound and different occurrence probabilities in the both of feedback (sensor to controller) and forward (controller to actuator) channels. A remote observer is employed to improve the performance of the system by computing non-delayed estimates of the sates. The closed-loop s...
متن کامل