Signal recognition particle RNA localization within the nucleolus differs from the classical sites of ribosome synthesis
نویسندگان
چکیده
The nucleolus is the site of ribosome biosynthesis, but is now known to have other functions as well. In the present study we have investigated how the distribution of signal recognition particle (SRP) RNA within the nucleolus relates to the known sites of ribosomal RNA synthesis, processing, and nascent ribosome assembly (i.e., the fibrillar centers, the dense fibrillar component (DFC), and the granular component). Very little SRP RNA was detected in fibrillar centers or the DFC of the nucleolus, as defined by the RNA polymerase I-specific upstream binding factor and the protein fibrillarin, respectively. Some SRP RNA was present in the granular component, as marked by the protein B23, indicating a possible interaction with ribosomal subunits at a later stage of maturation. However, a substantial portion of SRP RNA was also detected in regions of the nucleolus where neither B23, UBF, or fibrillarin were concentrated. Dual probe in situ hybridization experiments confirmed that a significant fraction of nucleolar SRP RNA was not spatially coincident with 28S ribosomal RNA. These results demonstrate that SRP RNA concentrates in an intranucleolar location other than the classical stations of ribosome biosynthesis, suggesting that there may be nucleolar regions that are specialized for other functions.
منابع مشابه
The plurifunctional nucleolus.
The nucleolus of eukaryotic cells was first described in the early 19th century and was discovered in the 1960s to be the seat of ribosome synthesis. Although rRNA transcription, rRNA processing and ribosome assembly have been clearly established as major functions of the nucleolus, recent studies suggest that the nucleolus participates in many other aspects of gene expression as well. Thus, th...
متن کاملThe Nucleolus and the Four Ribonucleoproteins of Translation
The classical view of the nucleolus as solely committed to ribosome biosynthesis has been modified by recent studies pointing to additional roles for this nuclear domain. These newly recognized features include the nucleolar presence of several nonribosomal RNAs transcribed by RNA polymerase III, as well as nucleolar roles in gene silencing, cell cycle progression, and cellular senescence. The ...
متن کاملLocalization of signal recognition particle RNA in the nucleolus of mammalian cells.
The signal recognition particle (SRP) of eukaryotic cells is a cytoplasmic ribonucleoprotein machine that arrests the translational elongation of nascent secretory and membrane proteins and facilitates their transport into the endoplasmic reticulum. The spatial pathway of SRP RNA processing and ribonucleoprotein assembly in the cell is not known. In the present investigation, microinjection of ...
متن کاملMultiple regions of NSR1 are sufficient for accumulation of a fusion protein within the nucleolus
NSR1, a 67-kD nucleolar protein, was originally identified in our laboratory as a nuclear localization signal binding protein, and has subsequently been found to be involved in ribosome biogenesis. NSR1 has three regions: an acidic/serine-rich NH2 terminus, two RNA recognition motifs, and a glycine/arginine-rich COOH terminus. In this study we show that NSR1 itself has a bipartite nuclear local...
متن کاملRNA gymnastics in mammalian signal recognition particle assembly
More than one third of the cellular proteome is destined for incorporation into cell membranes or export from the cell. In all domains of life, the signal recognition particle (SRP) delivers these proteins to the membrane and protein traffic falls apart without SRP logistics. With the aid of a topogenic transport signal, SRP retrieves its cargo right at the ribosome, from where they are sorted ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of Cell Biology
دوره 159 شماره
صفحات -
تاریخ انتشار 2002