Inhibition of cyclin D1 phosphorylation on threonine-286 prevents its rapid degradation via the ubiquitin-proteasome pathway.

نویسندگان

  • J A Diehl
  • F Zindy
  • C J Sherr
چکیده

The expression of D-type G1 cyclins and their assembly with their catalytic partners, the cyclin-dependent kinases 4 and 6 (CDK4 and CDK6), into active holoenzyme complexes are regulated by growth factor-induced signals. In turn, the ability of cyclin D-dependent kinases to trigger phosphorylation of the retinoblastoma (Rb) protein in the mid- to late G1 phase of the cell cycle makes the inactivation of Rb's growth suppressive function a mitogen-dependent step. The ability of D-type cyclins to act as growth factor sensors depends not only on their rapid induction by mitogens but also on their inherent instability, which ensures their precipitous degradation in cells deprived of growth factors. However, the mechanisms governing the turnover of D-type cyclins have not yet been elucidated. We now show that cyclin D1 turnover is governed by ubiquitination and proteasomal degradation, which are positively regulated by cyclin D1 phosphorylation on threonine-286. Although "free" or CDK4-bound cyclin D1 molecules are intrinsically unstable (t1/2 < 30 min), a cyclin D1 mutant (T286A) containing an alanine for threonine-286 substitution fails to undergo efficient polyubiquitination in an in vitro system or in vivo, and it is markedly stabilized (t1/2 approximately 3.5 hr) when inducibly expressed in either quiescent or proliferating mouse fibroblasts. Phosphorylation of cyclin D1 on threonine-286 also occurs in insect Sf9 cells, and although the process is enhanced significantly by the binding of cyclin D1 to CDK4, it does not depend on CDK4 catalytic activity. This implies that another kinase can phosphorylate cyclin D1 to accelerate its destruction and points to yet another means by which cyclin D-dependent kinase activity may be exogenously regulated.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Silymarin induces cyclin D1 proteasomal degradation via its phosphorylation of threonine-286 in human colorectal cancer cells.

Silymarin from milk thistle (Silybum marianum) plant has been reported to show anti-cancer, anti-inflammatory, antioxidant and hepatoprotective effects. For anti-cancer activity, silymarin is known to regulate cell cycle progression through cyclin D1 downregulation. However, the mechanism of silymarin-mediated cyclin D1 downregulation still remains unanswered. The current study was performed to...

متن کامل

Oncogenic Ras-mediated cell growth arrest and apoptosis are associated with increased ubiquitin-dependent cyclin D1 degradation.

The cellular responses to activated Ras vary depending on cell type. Normal cells are often induced into pathways that lead to cell growth arrest, senescence, and/or apoptosis in response to activated Ras expression. These are important protective anti-tumorigenic responses that restrict the propagation of cells bearing activated oncogenes. Here we show that induction of Ha-Ras(Val-12) in Rat-1...

متن کامل

Cancer Chemoprevention by Targeting Proteasomal Degradation

Cyclin D1 and other cyclins activate cyclin-dependent kinases to promote cell growth, and their overexpression has been associated with cell transformation and tumorigenesis (1, 2). In this issue of Clinical Cancer Research, Dragnev et al. (3) report that promoting proteasomal degradation of cyclin D1 and cyclin E, which results in cell cycle arrest at the G1 phase, is a mechanism of cancer che...

متن کامل

Paeoniflorin inhibits human glioma cells via STAT3 degradation by the ubiquitin–proteasome pathway

We investigated the underlying mechanism for the potent proapoptotic effect of paeoniflorin (PF) on human glioma cells in vitro, focusing on signal transducer and activator of transcription 3 (STAT3) signaling. Significant time- and dose-dependent apoptosis and inhibition of proliferation were observed in PF-treated U87 and U251 glioma cells. Expression of STAT3, its active form phosphorylated ...

متن کامل

12-O-tetradecanoylphorbol-1,3-acetate-induced degradation of protein kinase B via ubiquitin-proteasomal pathway depends on its Ser473 phosphorylation in gastric cancer cells.

TPA (12-O-tetradecanoylphorbol-1, 3-acetate) can induce cell apoptosis and cause PKB (protein kinase B) degradation correlated with its phosphorylation in gastric cancer cells. We investigated whether the ubiquitin-proteasomal pathway is involved in TPA-induced PKB degradation. The results showed that TPA could induce PKB ubiquitination by inhibiting its phosphorylation at the serine 473 site. ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Genes & development

دوره 11 8  شماره 

صفحات  -

تاریخ انتشار 1997