Numerical Quadrature and Asymptotic Expansions

نویسنده

  • B. W. Ninham
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mechanical Quadrature Methods for Solving First Kind Boundary Integral Equations of Stationary Stokes Problem

By means of Sidi-Israeli’s quadrature rules, mechanical quadrature methods (MQMs) for solving the first kind boundary integral equations (BIEs) of steady state Stokes problem are presented. The convergence of numerical solutions by MQMs is proved based on Anselone’s collective compact and asymptotical compact theory, and the asymptotic expansions with the odd powers of the errors are provided, ...

متن کامل

Recent Developments in Asymptotic Expansions From Numerical Analysis and Approximation Theory

In this chapter, we discuss some recently obtained asymptotic expansions related to problems in numerical analysis and approximation theory. • We present a generalization of the Euler–Maclaurin (E–M) expansion for the trapezoidal rule approximation of finite-range integrals R b a f ðxÞdx, when f(x) is allowed to have arbitrary algebraic–logarithmic endpoint singularities. We also discuss effect...

متن کامل

Mechanical Quadrature Methods and Their Extrapolations for Solving First Kind Boundary Integral Equations of Anisotropic Darcy-s Equation

The mechanical quadrature methods for solving the boundary integral equations of the anisotropic Darcy’s equations with Dirichlet conditions in smooth domains are presented. By applying the collectively compact theory, we prove the convergence and stability of approximate solutions. The asymptotic expansions for the error show that the methods converge with the order O (h), where h is the mesh ...

متن کامل

Integral representations for computing real parabolic cylinder functions

Integral representations are derived for the parabolic cylinder functions U(a, x), V (a, x) andW (a, x) and their derivatives. The new integrals will be used in numerical algorithms based on quadrature. They follow from contour integrals in the complex plane, by using methods from asymptotic analysis (saddle point and steepest descent methods), and are stable starting points for evaluating the ...

متن کامل

Asymptotic expansions of Gauss-Legendre quadrature rules for integrals with endpoint singularities

Let I[f ] = ∫ 1 −1 f(x) dx, where f ∈ C ∞(−1, 1), and let Gn[f ] = ∑n i=1 wnif(xni) be the n-point Gauss–Legendre quadrature approximation to I[f ]. In this paper, we derive an asymptotic expansion as n → ∞ for the error En[f ] = I[f ]−Gn[f ] when f(x) has general algebraic-logarithmic singularities at one or both endpoints. We assume that f(x) has asymptotic expansions of the forms f(x) ∼ ∞ ∑ ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010