Anchoring like octopus: biologically inspired soft artificial sucker.
نویسندگان
چکیده
This paper presents a robotic anchoring module, a sensorized mechanism for attachment to the environment that can be integrated into robots to enable or enhance various functions such as robot mobility, remaining on location or its ability to manipulate objects. The body of the anchoring module consists of two portions with a mechanical stiffness transition from hard to soft. The hard portion is capable of containing vacuum pressure used for actuation while the soft portion is highly conformable to create a seal to contact surfaces. The module is integrated with a single sensory unit which exploits a fibre-optic sensing principle to seamlessly measure proximity and tactile information for use in robot motion planning as well as measuring the state of firmness of its anchor. In an experiment, a variable set of physical loads representing the weights of potential robot bodies were attached to the module and its ability to maintain the anchor was quantified under constant and variable vacuum pressure signals. The experiment shows the effectiveness of the module in quantifying the state of firmness of the anchor and discriminating between different amounts of physical loads attached to it. The proposed anchoring module can enable many industrial and medical applications where attachment to environment is of crucial importance for robot control.
منابع مشابه
Inspiration, simulation and design for smart robot manipulators from the sucker actuation mechanism of cephalopods.
Octopus arms house 200-300 independently controlled suckers that can alternately afford an octopus fine manipulation of small objects and produce high adhesion forces on virtually any non-porous surface. Octopuses use their suckers to grasp, rotate and reposition soft objects (e.g., octopus eggs) without damaging them and to provide strong, reversible adhesion forces to anchor the octopus to ha...
متن کاملOctopus-Inspired Innovative Suction Cups
Octopus show great adhesion capabilities thanks to their suckers covering their ventral side of their arms. Starting from biological investigation, we identified preliminary specifications for the design of innovative artificial suction cups, which could be used in the field of soft robotics. The main features of the biological sucker are maintained as leading criteria for the choice of the act...
متن کاملStructure and mechanical properties of Octopus vulgaris suckers
In this study, we investigate the morphology and mechanical features of Octopus vulgaris suckers, which may serve as a model for the creation of a new generation of attachment devices. Octopus suckers attach to a wide range of substrates in wet conditions, including rough surfaces. This amazing feature is made possible by the sucker's tissues, which are pliable to the substrate profile. Previou...
متن کاملContinuum Robot Arms Inspired by Cephalopods
In this paper, we describe our recent results in the development of a new class of soft, continuous backbone (“continuum”) robot manipulators. Our work is strongly motivated by the dexterous appendages found in cephalopods, particularly the arms and suckers of octopus, and the arms and tentacles of squid. Our ongoing investigation of these animals reveals interesting and unexpected functional a...
متن کاملSoft Robot Arm Inspired by the Octopus
The octopus is a marine animal whose body has no rigid structures. It has eight arms composed of a peculiar muscular structure, named a muscular hydrostat. The octopus arms provide it with both locomotion and grasping capabilities, thanks to the fact that their stiffness can change over a wide range and can be controlled through combined contractions of the muscles. The muscular hydrostat can b...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of the Royal Society, Interface
دوره 14 135 شماره
صفحات -
تاریخ انتشار 2017