Domination game on uniform hypergraphs
نویسندگان
چکیده
In this paper we introduce and study the domination game on hypergraphs. This is played on a hypergraph H by two players, namely Dominator and Staller, who alternately select vertices such that each selected vertex enlarges the set of vertices dominated so far. The game is over if all vertices of H are dominated. Dominator aims to finish the game as soon as possible, while Staller aims to delay the end of the game. If each player plays optimally and Dominator starts, the length of the game is the invariant ‘game domination number’ denoted by γg(H). This definition is the generalization of the domination game played on graphs and it is a special case of the transversal game on hypergraphs. After some basic general results, we establish an asymptotically tight upper bound on the game domination number of k-uniform hypergraphs. In the remaining part of the paper we prove that γg(H) ≤ 5n/9 if H is a 3-uniform hypergraph of order n and does not contain isolated vertices. This also implies the following new result for graphs: If G is an isolate-free graph on n vertices and each of its edges is contained in a triangle, then γg(G) ≤ 5n/9.
منابع مشابه
Directed domination in oriented hypergraphs
ErdH{o}s [On Sch"utte problem, Math. Gaz. 47 (1963)] proved that every tournament on $n$ vertices has a directed dominating set of at most $log (n+1)$ vertices, where $log$ is the logarithm to base $2$. He also showed that there is a tournament on $n$ vertices with no directed domination set of cardinality less than $log n - 2 log log n + 1$. This notion of directed domination number has been g...
متن کاملTotal Transversals and Total Domination in Uniform Hypergraphs
In 2012, the first three authors established a relationship between the transversal number and the domination number of uniform hypergraphs. In this paper, we establish a relationship between the total transversal number and the total domination number of uniform hypergraphs. We prove tight asymptotic upper bounds on the total transversal number in terms of the number of vertices, the number of...
متن کاملTransversal Game on Hypergraphs and the 3/4-Conjecture on the Total Domination Game
The 34 -Game Total Domination Conjecture posed by Henning, Klavžar and Rall [Combinatorica, to appear] states that if G is a graph on n vertices in which every component contains at least three vertices, then γtg(G) ≤ 34n, where γtg(G) denotes the game total domination number of G. Motivated by this conjecture, we raise the problem to a higher level by introducing a transversal game in hypergra...
متن کاملPaired-Domination Game Played in Graphs
In this paper, we continue the study of the domination game in graphs introduced by Bre{v{s}}ar, Klav{v{z}}ar, and Rall. We study the paired-domination version of the domination game which adds a matching dimension to the game. This game is played on a graph $G$ by two players, named Dominator and Pairer. They alternately take turns choosing vertices of $G$ such that each vertex chosen by Domin...
متن کاملTotal domination of graphs and small transversals of hypergraphs
The main result of this paper is that every 4-uniform hypergraph on n vertices and m edges has a transversal with no more than (5n+4m)/21 vertices. In the particular case n = m, the transversal has at most 3n/7 vertices, and this bound is sharp in the complement of the Fano plane. Chvátal and McDiarmid [5] proved that every 3-uniform hypergraph with n vertices and edges has a transversal of siz...
متن کامل