Axial forces and bending moments in the loaded rabbit tibia in vivo
نویسندگان
چکیده
BACKGROUND Different animal models are used as fracture models in orthopaedic research prior to implant use in humans, although biomechanical forces can differ to a great extend between species due to variable anatomic conditions, particularly with regard to the gait. The rabbit is an often used fracture model, but biomechanical data are very rare. The objective of the present study was to measure axial forces, bending moments, and bending axis directly in the rabbit tibia in vivo. The following hypothesis was tested: Axial forces and bending moments in the mid-diaphysis of rabbit tibia differ from other experimental animals or indirectly calculated data. METHODS A minifixateur system with 4 force sensors was developed and attached to rabbit tibia (n = 4), which were subsequently ostectomised. Axial forces, bending moments and bending angles were calculated telemetrically during weight bearing in motion between 6 and 42 days post operation. RESULTS Highest single values were 201% body weight [% bw] for axial forces and 409% bw cm for bending moments. Whereas there was a continous decrease in axial forces over time after day 10 (P = 0.03 on day 15), a decrease in bending moments was inconsistent (P = 0.03 on day 27). High values for bending moments were frequently, but not consistently, associated with high values for axial forces. CONCLUSION Axial forces in rabbit tibia exceeded axial forces in sheep, and differed from indirectly calculated data. The rabbit is an appropriate fracture model because axial loads and bending moments in rabbit tibia were more closely to human conditions than in sheep tibia as an animal model.
منابع مشابه
Loading of the knee joint during activities of daily living measured in vivo in five subjects.
Detailed knowledge about loading of the knee joint is essential for preclinical testing of implants, validation of musculoskeletal models and biomechanical understanding of the knee joint. The contact forces and moments acting on the tibial component were therefore measured in 5 subjects in vivo by an instrumented knee implant during various activities of daily living. Average peak resultant fo...
متن کاملEvaluation of structural analysis of tunnel segmental lining using beam-spring method and force-method (Case study: Chamshir water conveyance tunnel)
The joints between segmental rings can withstand a certain amount of bending moment as well as axial and shear forces. Generally, in the structural analysis of tunnel segmental lining, the joints can be modeled as elastic hinges or rotational springs, and their rigidity should be demonstrated in terms of the rigidity of the joints or their rotational stiffness. Therefore, the bending moment act...
متن کاملEffect of segmental joint stiffness on tunnel lining internal forces under static conditions
According to the wide application of segmental lining in mechanized tunneling, recognizing the behavior of segmental lining joints is important in tunnels designing. In the structural analysis of the tunnel segmental lining, segmental joints can be considered as elastic joints, and their stiffness characteristics are affected by the rotational, shear, and axial stiffness. The purpose of this wo...
متن کاملEffects of hormonal conditions and drugs on both muscle and bone strength can be assessed in a single rat test.
Strength of both muscles and bone are important for fracture prevention in osteoporotic individuals. Therefore, drugs that are preclinically tested in animals for preventing or treating osteoporosis, and reducing fracture risk, should not only be checked for their effects on bone strength, but also for those on muscle strength. We developed a rat model to measure both in the same animal, using ...
متن کاملEffect of Segmental Joint on Internal Forces in Tunnel Lining under Seismic Loading by Numerical Method
Although segmental tunnel linings are often used for seismic areas, the influence of segment joints on the segmental lining behavior under seismic loading has not been thoroughly considered in the literature. This paper presents the results of a numerical study investigating the effects of the rotational, axial, and radial joint stiffness of the longitudinal joints on the structural force...
متن کامل