Defining ATM-Independent Functions of the Mre11 Complex with a Novel Mouse Model.

نویسندگان

  • Alessia Balestrini
  • Laura Nicolas
  • Katherine Yang-Lott
  • Olga A Guryanova
  • Ross L Levine
  • Craig H Bassing
  • Jayanta Chaudhuri
  • John H J Petrini
چکیده

UNLABELLED The Mre11 complex (Mre11, Rad50, and Nbs1) occupies a central node of the DNA damage response (DDR) network and is required for ATM activation in response to DNA damage. Hypomorphic alleles of MRE11 and NBS1 confer embryonic lethality in ATM-deficient mice, indicating that the complex exerts ATM-independent functions that are essential when ATM is absent. To delineate those functions, a conditional ATM allele (ATM(flox)) was crossed to hypomorphic NBS1 mutants (Nbs1(ΔB/ΔB) mice). Nbs1(ΔB/ΔB) Atm(-/-) hematopoietic cells derived by crossing to vav(cre) were viable in vivo. Nbs1(ΔB/ΔB) Atm(-/-) (VAV) mice exhibited a pronounced defect in double-strand break repair and completely penetrant early onset lymphomagenesis. In addition to repair defects observed, fragile site instability was noted, indicating that the Mre11 complex promotes genome stability upon replication stress in vivo. The data suggest combined influences of the Mre11 complex on DNA repair, as well as the responses to DNA damage and DNA replication stress. IMPLICATIONS A novel mouse model was developed, by combining a vav(cre)-inducible ATM knockout mouse with an NBS1 hypomorphic mutation, to analyze ATM-independent functions of the Mre11 complex in vivo. These data show that the DNA repair, rather than DDR signaling functions of the complex, is acutely required in the context of ATM deficiency to suppress genome instability and lymphomagenesis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Mre11-Nbs1 Interface Is Essential for Viability and Tumor Suppression.

The Mre11 complex (Mre11, Rad50, and Nbs1) is integral to both DNA repair and ataxia telangiectasia mutated (ATM)-dependent DNA damage signaling. All three Mre11 complex components are essential for viability at the cellular and organismal levels. To delineate essential and non-essential Mre11 complex functions that are mediated by Nbs1, we used TALEN-based genome editing to derive Nbs1 mutant ...

متن کامل

Mre11 Nuclease Activity Has Essential Roles in DNA Repair and Genomic Stability Distinct from ATM Activation

The Mre11/Rad50/NBS1 (MRN) complex maintains genomic stability by bridging DNA ends and initiating DNA damage signaling through activation of the ATM kinase. Mre11 possesses DNA nuclease activities that are highly conserved in evolution but play unknown roles in mammals. To define the functions of Mre11, we engineered targeted mouse alleles that either abrogate nuclease activities or inactivate...

متن کامل

The Drosophila Nbs protein functions in multiple pathways for the maintenance of genome stability.

The Mre11/Rad50/Nbs (MRN) complex and the two protein kinases ATM and ATR play critical roles in the response to DNA damage and telomere maintenance in mammalian systems. It has been previously shown that mutations in the Drosophila mre11 and rad50 genes cause both telomere fusion and chromosome breakage. Here, we have analyzed the role of the Drosophila nbs gene in telomere protection and the ...

متن کامل

A Murine Model of Nijmegen Breakage Syndrome

Nijmegen breakage syndrome (NBS) is a rare autosomal recessive disorder characterized by microcephaly, immunodeficiency, and predisposition to hematopoietic malignancy. The clinical and cellular phenotypes of NBS substantially overlap those of ataxia-telangiectasia (A-T). NBS is caused by mutation of the NBS1 gene, which encodes a member of the Mre11 complex, a trimeric protein complex also con...

متن کامل

Mre11 protein complex prevents double-strand break accumulation during chromosomal DNA replication.

Mre11 complex promotes repair of DNA double-strand breaks (DSBs). Xenopus Mre11 (X-Mre11) has been cloned, and its role in DNA replication and DNA damage checkpoint studied in cell-free extracts. DSBs stimulate the phosphorylation and 3'-5' exonuclease activity of X-Mre11 complex. This induced phosphorylation is ATM independent. Phosphorylated X-Mre11 is found associated with replicating nuclei...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Molecular cancer research : MCR

دوره 14 2  شماره 

صفحات  -

تاریخ انتشار 2016