Aberrant Splicing in Transgenes Containing Introns, Exons, and V5 Epitopes: Lessons from Developing an FSHD Mouse Model Expressing a D4Z4 Repeat with Flanking Genomic Sequences
نویسندگان
چکیده
The DUX4 gene, encoded within D4Z4 repeats on human chromosome 4q35, has recently emerged as a key factor in the pathogenic mechanisms underlying Facioscapulohumeral muscular dystrophy (FSHD). This recognition prompted development of animal models expressing the DUX4 open reading frame (ORF) alone or embedded within D4Z4 repeats. In the first published model, we used adeno-associated viral vectors (AAV) and strong viral control elements (CMV promoter, SV40 poly A) to demonstrate that the DUX4 cDNA caused dose-dependent toxicity in mouse muscles. As a follow-up, we designed a second generation of DUX4-expressing AAV vectors to more faithfully genocopy the FSHD-permissive D4Z4 repeat region located at 4q35. This new vector (called AAV.D4Z4.V5.pLAM) contained the D4Z4/DUX4 promoter region, a V5 epitope-tagged DUX4 ORF, and the natural 3' untranslated region (pLAM) harboring two small introns, DUX4 exons 2 and 3, and the non-canonical poly A signal required for stabilizing DUX4 mRNA in FSHD. AAV.D4Z4.V5.pLAM failed to recapitulate the robust pathology of our first generation vectors following delivery to mouse muscle. We found that the DUX4.V5 junction sequence created an unexpected splice donor in the pre-mRNA that was preferentially utilized to remove the V5 coding sequence and DUX4 stop codon, yielding non-functional DUX4 protein with 55 additional residues on its carboxyl-terminus. Importantly, we further found that aberrant splicing could occur in any expression construct containing a functional splice acceptor and sequences resembling minimal splice donors. Our findings represent an interesting case study with respect to AAV.D4Z4.V5.pLAM, but more broadly serve as a note of caution for designing constructs containing V5 epitope tags and/or transgenes with downstream introns and exons.
منابع مشابه
Inappropriate splicing of a chimeric gene containing a large internal exon results in exon skipping in transgenic mice.
We generated transgenic mice containing a chimeric construct consisting of the alpha-cardiac myosin heavy chain (alpha cMHC) promoter and the human renin (hRen) gene in order to target hRen synthesis specifically to the heart. The construct consisted of three segments: (i) an alpha cMHC DNA segment including 4.5 kb of 5' flanking DNA and an additional 1.1 kb of genomic DNA encompassing exons I-...
متن کاملFilling in the Gap of Human Chromosome 4: Single Molecule Real Time Sequencing of Macrosatellite Repeats in the Facioscapulohumeral Muscular Dystrophy Locus.
A majority of facioscapulohumeral muscular dystrophy (FSHD) is caused by contraction of macrosatellite repeats called D4Z4 that are located in the subtelomeric region of human chromosome 4q35. Sequencing the FSHD locus has been technically challenging due to its long size and nearly identical nature of repeat elements. Here we report sequencing and partial assembly of a BAC clone carrying an en...
متن کاملStructural organization of glycophorin A and B genes: glycophorin B gene evolved by homologous recombination at Alu repeat sequences.
Glycophorins A (GPA) and B (GPB) are two major sialoglycoproteins of the human erythrocyte membrane. Here we present a comparison of the genomic structures of GPA and GPB developed by analyzing DNA clones isolated from a K562 genomic library. Nucleotide sequences of exon-intron junctions and 5' and 3' flanking sequences revealed that the GPA and GPB genes consist of 7 and 5 exons, respectively,...
متن کاملAnalysis of 5' flanking sequences and intron-exon boundaries of the rat prolactin gene.
A rat genomic DNA clone containing the 5’ flanking region, three exons, two introns, and a portion of a third intron of the rat prolactin gene was isolated and characterized. Sequence determinations were used to identify the exon-intron boundaries and analyze the DNA region upstream from the initiator methionine codon. Another genomic DNA clone that we previously characterized (Gubbins, E. J., ...
متن کاملIntracisternal type A particle-mediated activation of the Notch4/int3 gene in a mouse mammary tumor: generation of truncated Notch4/int3 mRNAs by retroviral splicing events.
The int3 oncogene was discovered as a frequent target in mouse mammary tumor virus-induced mammary tumors and encodes the intracellular domain of a Notch4/int3 protein. In one spontaneous mammary tumor, no. 9, that developed in a BALB/c mouse, we have found an insertion of a 1.2-kb sequence, consisting of a 5' long terminal repeat and gag sequences of an intracisternal type A particle (IAP) as ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 10 شماره
صفحات -
تاریخ انتشار 2015