Inhibition of p38 MAPK-dependent excision repair cross-complementing 1 expression decreases the DNA repair capacity to sensitize lung cancer cells to etoposide.

نویسندگان

  • Min-Shao Tsai
  • Shao-Hsing Weng
  • Huang-Jen Chen
  • Yu-Fan Chiu
  • Yu-Ching Huang
  • Sheng-Chieh Tseng
  • Ya-Hsun Kuo
  • Yun-Wei Lin
چکیده

Etoposide (VP-16), a topoisomerase II inhibitor, is an effective anticancer drug currently used for the treatment of a wide range of cancers. Excision repair cross-complementary 1 (ERCC1) is a key protein involved in the process of nucleotide excision repair. High level of ERCC1 expression in cancers is associated with resistance to DNA damage-based chemotherapy. In this study, the effects of p38 mitogen-activated protein kinase (MAPK) signal on the ERCC1 expression induced by etoposide in non-small cell lung cancer (NSCLC) cell lines was investigated. Etoposide increased phosphorylated MAPK kinase 3/6 (MKK3/6)-p38 MAPK and ERCC1 protein and mRNA levels in A549 and H1975 cells. Moreover, SB202190, a p38 inhibitor, or knockdown of p38 expression by specific short interfering RNA (siRNA) significantly decreased the etoposide-induced ERCC1 protein levels and DNA repair capacity in etoposide-exposed NSCLC cells. Enhancement of p38 activation by constitutively active MKK6 (MKK6E) increased ERCC1 protein levels. Specific inhibition of ERCC1 by siRNA significantly enhanced the etoposide-induced cytotoxicity and hypoxanthine guanine phosphoribosyltransferase (hprt) gene mutation rate. Moreover, the Hsp90 inhibitor 17-allylamino-17-demethoxygeldanamycin (17-AAG) could decrease the etoposide-induced p38 MAPK-mediated ERCC1 expression and augment the cytotoxic effect and growth inhibition by etopsoside. 17-AAG and etoposide-induced synergistic cytotoxic effect and DNA repair capacity decrease could be abrogated in lung cancer cells with MKK6E or HA-p38 MAPK expression vector transfection. Our results suggest that in human NSCLC cells, ERCC1 is induced by etoposide through the p38 MAPK pathway, and this phenomenon is required for NSCLC survival and resistant DNA damage.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Therapeutic Discovery Inhibition of p38 MAPK-Dependent Excision Repair Cross-Complementing 1 Expression Decreases the DNA Repair Capacity to Sensitize Lung Cancer Cells to Etoposide

Etoposide (VP-16), a topoisomerase II inhibitor, is an effective anticancer drug currently used for the treatment of a wide range of cancers. Excision repair cross-complementary 1 (ERCC1) is a key protein involved in the process of nucleotide excision repair. High level of ERCC1 expression in cancers is associated with resistance to DNA damage-based chemotherapy. In this study, the effects of p...

متن کامل

[ERCC1 expression as a predictor of survival after operation in stage I non-small cell lung cancer patients].

BACKGROUND AND OBJECTIVE Proteins of the nucleotide excision repair pathway can repair DNA damage. The excision repair cross-complementing (ERCC) gene family reduce damagement of DNA by nucleotide excision and repair. The aim of this study is to investigate the expressions of ERCC1 (members of DNA repair gene family) in patients with non-small cell lung cancer (NSCLC) as well as their clinical ...

متن کامل

Effects of low dose radiation on the expression of proteins related to DNA repair requiring Caveolin-1 in human mammary epithelial cells

Background: Radiotherapy is an effective and important therapeutic method for breast cancer, but at the same time it has a radiation-induced bystander effect on normal tissue around the tumor. Repair of double-strand breaks (DSBs) by normal cells can reduce the extent of damage caused by this effect. Caveolin-1 (Cav-1) is an important regulatory molecule in cell signal transduction. However, th...

متن کامل

Association of -77T>C and Arg194trp polymorphisms of XRCC1 with risk of coronary artery diseases in Iranian population

Objective(s): Coronary artery disease (CAD) is the leading cause of death in both male and female worldwide. The main cause of CAD is the atherosclerosis of coronary arteries, which is, mostly caused by genetic alteration. 50% of such cases occur in mitotic cells where single-strand breaks occur spontaneously or due to ionizing radiation. X-ray repair cross-complementing protein 1 (XRCC1) as a ...

متن کامل

Lung Cancer Risk and Genetic Polymorphisms in DNA Repair Pathways: A Meta-Analysis

Genetic variations in DNA repair genes are thought to modulate DNA repair capacity and are suggested to be related to lung cancer risk. We conducted a meta-analysis of epidemiologic studies on the association between genetic polymorphisms in both base excision repair and nucleotide excision repair pathways, and lung cancer. We found xeroderma pigmentosum complementation group A (XPA) G23A (odds...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Molecular cancer therapeutics

دوره 11 3  شماره 

صفحات  -

تاریخ انتشار 2012