A supramolecular multi-block copolymer with a high propensity for alternation.

نویسندگان

  • Taiho Park
  • Steven C Zimmerman
چکیده

Alternating, multi-block supramolecular copolymers were created using quadruple hydrogen bonding as the noncovalent binding force. One block consisted of two guanosine butyl urea (UG) units attached at the ends of a triethylene glycol linker or a PEG chain (MW = 2 kD). The other block contained a 2,7-diamido-1,8-naphthyridine (DAN) unit at each end of a short alkane diester linker or a 100 kD poly(butyl methacrylate) macromolecule. The UG unit presents an ADDA hydrogen bonding array that is complementary to the DAAD array of DAN, and these form a very strong complex (Kassoc approximately 5 x 107 M-1), whereas UG and DAN weakly self-associate. These recognition properties allowed a multi-block supramolecular polymer to form which exhibits a high propensity for alternation. The self-assembled polymeric structure was shown to be reversibly formed and it was characterized by a combination of dynamic light scattering (DLS), 1H NMR, size exclusion chromatography (SEC), and viscometry.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multiple nanoscale templates by orthogonal degradation of a supramolecular block copolymer lithographic system.

An orthogonal approach to the creation of multiple nanoscale templates from a single supramolecular block copolymer system is presented. The enabling feature of this strategy is the design of block copolymers that incorporate independent degradation chemistries which permits each block copolymer to be addressed individually and sequentially. By blending a block copolymer containing H-bond donor...

متن کامل

Self-Organization on Multiple Length Scales in "Hairy Rod"-Coil Block Copolymer Supramolecular Complexes

The last two decades have seen an explosion of research activity in the area of self-assembled polymeric and supramolecular materials. Self-assembly schemes rely on an often delicate balance between competing repulsive and attractive forces between structural elements. In traditional coil-coil block copolymers, microphase separated structures are dictated by the balance of immiscibility between...

متن کامل

Thin Film Morphology of Block Copolymer Blends with Tunable Supramolecular Interactions for Lithographic Applications

A modular and hierarchical self-assembly strategy using block copolymer blends (AB/B’C) with tunable supramolecular interactions is reported. By combining supramolecular assembly of hydrogenbonding units with controlled phase separation of diblock copolymers, highly ordered square arrays or hexagonal arrays of cylindrical domains were obtained formixtures of poly(ethylene oxide)-b-poly(styrene-...

متن کامل

Supramolecular block copolymers by kinetically controlled co-self-assembly of planar and core-twisted perylene bisimides

New synthetic methodologies for the formation of block copolymers have revolutionized polymer science within the last two decades. However, the formation of supramolecular block copolymers composed of alternating sequences of larger block segments has not been realized yet. Here we show by transmission electron microscopy (TEM), 2D NMR and optical spectroscopy that two different perylene bisimi...

متن کامل

Preparation, Characterization and Pharmacodynamic Evaluation of Fused Dispersions of Simvastatin using PEO-PPO Block Copolymer

    The solubility enhancement of poorly soluble compounds is an important task in pharmaceutical technology as it leads to better bioavailability and a more efficient application. Fused dispersions (FDs) of simvastatin (SIM) using PEO-PPO block copolymer were prepared which paved the way for the formation of an amorphous product with enhanced dissolution and bioavailability. The accumulative s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of the American Chemical Society

دوره 128 43  شماره 

صفحات  -

تاریخ انتشار 2006