Learning Multimodal Transition Dynamics for Model-Based Reinforcement Learning

نویسندگان

  • Thomas M. Moerland
  • Joost Broekens
  • Catholijn M. Jonker
چکیده

In this paper we study how to learn stochastic, multimodal transition dynamics in reinforcement learning (RL) tasks. We focus on evaluating transition function estimation, while we defer planning over this model to future work. Stochasticity is a fundamental property of many task environments. However, discriminative function approximators have difficulty estimating multimodal stochasticity. In contrast, deep generative models do capture complex high-dimensional outcome distributions. First we discuss why, amongst such models, conditional variational inference (VI) is theoretically most appealing for model-based RL. Subsequently, we compare different VI models on their ability to learn complex stochasticity on simulated functions, as well as on a typical RL gridworld with multimodal dynamics. Results show VI successfully predicts multimodal outcomes, but also robustly ignores these for deterministic parts of the transition dynamics. In summary, we show a robust method to learn multimodal transitions using function approximation, which is a key preliminary for model-based RL in stochastic domains.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Reinforcement learning based feedback control of tumor growth by limiting maximum chemo-drug dose using fuzzy logic

In this paper, a model-free reinforcement learning-based controller is designed to extract a treatment protocol because the design of a model-based controller is complex due to the highly nonlinear dynamics of cancer. The Q-learning algorithm is used to develop an optimal controller for cancer chemotherapy drug dosing. In the Q-learning algorithm, each entry of the Q-table is updated using data...

متن کامل

Using BELBIC based optimal controller for omni-directional threewheel robots model identified by LOLIMOT

In this paper, an intelligent controller is applied to control omni-directional robots motion. First, the dynamics of the three wheel robots, as a nonlinear plant with considerable uncertainties, is identified using an efficient algorithm of training, named LoLiMoT. Then, an intelligent controller based on brain emotional learning algorithm is applied to the identified model. This emotional l...

متن کامل

Towards Behavior-Aware Model Learning from Human-Generated Trajectories

Inverse reinforcement learning algorithms recover an unknown reward function for a Markov decision process, based on observations of user behaviors that optimize this reward function. Here we consider the complementary problem of learning the unknown transition dynamics of an MDP based on such observations. We describe the behavior-aware modeling (BAM) algorithm, which learns models of transiti...

متن کامل

Online Feature Selection for Model-based Reinforcement Learning

We propose a new framework for learning the world dynamics of feature-rich environments in model-based reinforcement learning. The main idea is formalized as a new, factored state-transition representation that supports efficient online-learning of the relevant features. We construct the transition models through predicting how the actions change the world. We introduce an online sparse coding ...

متن کامل

Model-Based Reinforcement Learning with Continuous States and Actions

Finding an optimal policy in a reinforcement learning (RL) framework with continuous state and action spaces is challenging. Approximate solutions are often inevitable. GPDP is an approximate dynamic programming algorithm based on Gaussian process (GP) models for the value functions. In this paper, we extend GPDP to the case of unknown transition dynamics. After building a GP model for the tran...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1705.00470  شماره 

صفحات  -

تاریخ انتشار 2017