Semiparametric regression for assessing agreement using tolerance bands

نویسنده

  • Pankaj K. Choudhary
چکیده

This article describes a Bayesian semiparametric approach for assessing agreement between two methods for measuring a continuous variable using tolerance bands. A tolerance band quantifies the extent of agreement in methods as a function of a covariate by estimating the range of their differences in a specified large proportion of population. The mean function of differences is modelled using a penalized spline through its mixed model representation. The covariance matrix of the errors may also depend on a covariate. The Bayesian approach is straightforward to implement using the Markov chain Monte Carlo methodology. It provides an alternative to the rather ad hoc frequentist likelihood-based approaches that do not work well in general. Simulation for two commonly used models and their special cases suggests that the proposed Bayesian method has reasonably good frequentist coverage. Two real data sets are used for illustration, and the Bayesian and the frequentist inferences are compared.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Direct Approach to Inference in Nonparametric and Semiparametric Quantile Regression Models

This paper makes two main contributions. First, we construct “density-free” confidence intervals and confidence bands for conditional quantiles in nonparametric and semiparametric quantile regression models. They are based on pairs of symmetrized k-NN quantile estimators at two appropriately chosen quantile levels. In contrast to Wald-type confidence intervals or bands based on the asymptotic d...

متن کامل

Generalized Ridge Regression Estimator in Semiparametric Regression Models

In the context of ridge regression, the estimation of ridge (shrinkage) parameter plays an important role in analyzing data. Many efforts have been put to develop skills and methods of computing shrinkage estimators for different full-parametric ridge regression approaches, using eigenvalues. However, the estimation of shrinkage parameter is neglected for semiparametric regression models. The m...

متن کامل

Robust high-dimensional semiparametric regression using optimized differencing method applied to the vitamin B2 production data

Background and purpose: By evolving science, knowledge, and technology, we deal with high-dimensional data in which the number of predictors may considerably exceed the sample size. The main problems with high-dimensional data are the estimation of the coefficients and interpretation. For high-dimension problems, classical methods are not reliable because of a large number of predictor variable...

متن کامل

Simultaneous confidence bands using model assisted Cox regression

In the first part, entitled “Model assisted Cox regression” and published in Journal of Multivariate Analysis (JMVA), it was shown that standard Cox regression, combined with Dikta’s semiparametric random censorship models, provides an effective framework for obtaining improved parameter estimates. Here, this methodology is exploited to construct simultaneous confidence bands (SCBs) for subject...

متن کامل

Wavelet Threshold Estimator of Semiparametric Regression Function with Correlated Errors

Wavelet analysis is one of the useful techniques in mathematics which is used much in statistics science recently. In this paper, in addition to introduce the wavelet transformation, the wavelet threshold estimation of semiparametric regression model with correlated errors with having Gaussian distribution is determined and the convergence ratio of estimator computed. To evaluate the wavelet th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Computational Statistics & Data Analysis

دوره 51  شماره 

صفحات  -

تاریخ انتشار 2007