Live-cell analysis of kinetochore–microtubule interaction in budding yeast

نویسندگان

  • Kozo Tanaka
  • Etsushi Kitamura
  • Tomoyuki U. Tanaka
چکیده

Kinetochore capture and transport by spindle microtubules plays a crucial role in high-fidelity chromosome segregation, although its detailed mechanism has remained elusive. It has been difficult to observe individual kinetochore-microtubule interactions because multiple kinetochores are captured by microtubules during a short period within a small space. We have developed a method to visualize individual kinetochore-microtubule interactions in Saccharomyces cerevisiae, by isolating one of the kinetochores from others through regulation of the activity of a centromere. We detail this technique, which we call 'centromere reactivation system', for dissection of the process of kinetochore capture and transport on mitotic spindle. Kinetochores are initially captured by the side of microtubules extending from a spindle pole, and subsequently transported poleward along them, which is an evolutionarily conserved process from yeast to vertebrate cells. Our system, in combination with amenable yeast genetics, has proved useful to elucidate the molecular mechanisms of kinetochore-microtubule interactions. We discuss practical considerations for applying our system to live cell imaging using fluorescence microscopy.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Coordination of Centromere Replication, Spindle Formation, and Kinetochore–Microtubule Interaction in Budding Yeast

The kinetochore is a protein complex that assembles on centromeric DNA to mediate chromosome-microtubule interaction. Most eukaryotic cells form the spindle and establish kinetochore-microtubule interaction during mitosis, but budding yeast cells finish these processes in S-phase. It has long been noticed that the S-phase spindle in budding yeast is shorter than that in metaphase, but the biolo...

متن کامل

Yeast kinetochores do not stabilize Stu2p-dependent spindle microtubule dynamics.

The interaction of kinetochores with dynamic microtubules during mitosis is essential for proper centromere motility, congression to the metaphase plate, and subsequent anaphase chromosome segregation. Budding yeast has been critical in the discovery of proteins necessary for this interaction. However, the molecular mechanism for microtubule-kinetochore interactions remains poorly understood. U...

متن کامل

Molecular architecture of the kinetochore-microtubule attachment site is conserved between point and regional centromeres

Point and regional centromeres specify a unique site on each chromosome for kinetochore assembly. The point centromere in budding yeast is a unique 150-bp DNA sequence, which supports a kinetochore with only one microtubule attachment. In contrast, regional centromeres are complex in architecture, can be up to 5 Mb in length, and typically support many kinetochore-microtubule attachments. We us...

متن کامل

Molecular Analysis of Kinetochore-Microtubule Attachment in Budding Yeast

The complex series of movements that mediates chromosome segregation during mitosis is dependent on the attachment of microtubules to kinetochores, DNA-protein complexes that assemble on centromeric DNA. We describe the use of live-cell imaging and chromatin immunoprecipitation in S. cerevisiae to identify ten kinetochore subunits, among which are yeast homologs of microtubule binding proteins ...

متن کامل

A 3D Map of the Yeast Kinetochore Reveals the Presence of Core and Accessory Centromere-Specific Histone

The budding yeast kinetochore is ~68 nm in length with a diameter slightly larger than a 25 nm microtubule. The kinetochores from the 16 chromosomes are organized in a stereotypic cluster encircling central spindle microtubules. Quantitative analysis of the inner kinetochore cluster (Cse4, COMA) reveals structural features not apparent in singly attached kinetochores. The cluster of Cse4-contai...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 51  شماره 

صفحات  -

تاریخ انتشار 2010