A Neurovascular Blood-Flow Modulation Model via Acupuncture Induced Nitric Oxide
نویسنده
چکیده
Acupuncture is a practice of inserting needles into the body to reduce pain or induce anesthesia. More broadly, acupuncture is a family of procedures involving the stimulation of anatomical locations on or beneath the skin by a variety of techniques. Employing acupuncture to treat human illness or to maintain body health has been practiced for thousands of years. Recently, models able to describe the mode of action of acupuncture have aroused scientists’ curiosity. Scientific interest in acupuncture has led numerous investigators to conduct clinical trials that have tested the efficacy of acupuncture at various acupuncture points. However, the mechanism(s) of action of acupuncture at the various meridians are still poorly understood. The traditional Chinese medical theory says: ‘Qi acts as the commander of blood and blood acts as the mother of Qi’. This is a general description of the effects of Qi on blood and this theory can be extended to include the ideas that Qi promotes blood circulation and controls the blood functioning. Furthermore blood conveying Qi and blood nourishing Qi. Previous studies have provided a variety of information regarding the physiological effects of acupuncture on animal and human bodies. Most of them have indicated that acupuncture is able to increase blood flow [1], and at the acupuncture points and meridians have a high electrical conductance [2, 3]. A relationship has also been suggested that among those acupuncture points and meridians with connective tissue planes [4] and the perivascular space [5]. A number of possible mechanisms by which acupuncture acts have been reviewed [6]. The results obtained from human and animal studies have shown that acupuncture enhances the generation of nitric oxide (NO) and increases local circulation [7]. Kim, et al. (2006) pointed out that employing acupuncture on stomach 36 point (ST-36) is able to reduce blood pressure by activating NO signaling mechanisms [8]. Ma (2003) showed that NO content and Nitric Oxide Synthase (NOS) expression were consistently higher at skin acupuncture points/meridians [9]. Chen et al. (2005) showed that L-arginine-derived NO synthesis appears to mediate the noradrenergic function of skin sympathetic nerve activation and that this contributes to skin electrical resistance of the acupuncture points and meridians [10]. NO is known to exert an effect on a number of functions including the regulation of blood pressure, contributing to the immune response, the control of neurotransmission and participation in cell differentiation and other physiological functions [11]. NO, a diffusible
منابع مشابه
Effect of Angiotensin II on Blood Flow in Acute and Chronically Inflamed Knee Joints of Rabbits: The Role of Nitric Oxide
Background: Angiotensin converting enzyme (ACE) upregulation in stromal cells of joints affected by rheumatoid arthritis may lead to higher tissue angiotensin II that is a vasoconstrictor and mitogen factor. To date, the role of angiotensin II on regulating blood flow in inflamed joints has not been studied. Methods: Acute and chronic joint inflammation was induced in rabbits by intra-articular...
متن کاملInhibition of nitric oxide synthase activity improves focal cerebral damage induced by cerebral ischemia/reperfusion in normotensive rats
Introduction: Nitric oxide seems to play a dual role in ischemia/reperfusion injury. Few studies have investigated whether it exacerbates or improves brain edema. In the present study, we inhibited the activity of nitric oxide synthase by L-NAME and evaluated the cerebral infarct volume, tissue swelling and brain edema, alongside the measurement of blood flow of the ischemic region. Methods...
متن کاملNeuronal nitric oxide has a role as a perfusion regulator and a synaptic modulator in cerebellum but not in neocortex during somatosensory stimulation--an animal PET study.
To clarify a role of neuronal nitric oxide in neurovascular coupling, we performed cerebral blood flow (CBF) and cerebral metabolic rate of glucose (CMR(glc)) measurements with positron emission tomography in somatosensory-stimulated cats using a specific neuronal nitric oxide synthase inhibitor, 7-nitroindazole (7-NI). The effect on flow-metabolism coupling were tested by global and regional-s...
متن کاملFunctional hyperemia and mechanisms of neurovascular coupling in the retinal vasculature.
The retinal vasculature supplies cells of the inner and middle layers of the retina with oxygen and nutrients. Photic stimulation dilates retinal arterioles producing blood flow increases, a response termed functional hyperemia. Despite recent advances, the neurovascular coupling mechanisms mediating the functional hyperemia response in the retina remain unclear. In this review, the retinal fun...
متن کاملRole of Nitric Oxide and ATP-Sensitive K+ Channels in Regulation of Basal Blood Flow and Hypercapnic Vasodilatation of Cerebral Blood Vessels in Rabbit
Background: The mechanisms underlying cerebral hypercapnic vasodilatation are not fully understood. Objective: To investigate the role of nitric oxide (NO) and ATP-sensitive potassium (KATP) channels in basal blood flow regulation and hypercapnia-induced vasodilatation in rabbit cerebral blood vessels. Methods: The change in cerebral blood flow was measured by a laser Doppler flowmeter in 18 Ne...
متن کامل