Exploring the Syntactic Abilities of RNNs with Multi-task Learning
نویسندگان
چکیده
Recent work has explored the syntactic abilities of RNNs using the subject-verb agreement task, which diagnoses sensitivity to sentence structure. RNNs performed this task well in common cases, but faltered in complex sentences (Linzen et al., 2016). We test whether these errors are due to inherent limitations of the architecture or to the relatively indirect supervision provided by most agreement dependencies in a corpus. We trained a single RNN to perform both the agreement task and an additional task, either CCG supertagging or language modeling. Multitask training led to significantly lower error rates, in particular on complex sentences, suggesting that RNNs have the ability to evolve more sophisticated syntactic representations than shown before. We also show that easily available agreement training data can improve performance on other syntactic tasks, in particular when only a limited amount of training data is available for those tasks. The multi-task paradigm can also be leveraged to inject grammatical knowledge into language models.
منابع مشابه
Different Task Complexity Factors and Cognitive Individual Differences: The Effects on EFL Writers’ Performance
This study aimed at examining the main and interaction effects of increased intentional reasoning demands, planning time, and also language learning aptitude on syntactic complexity, accuracy, lexical complexity, and fluency (CALF) of 226 EFL learners’ performance on letter writing tasks. The participants were first randomly assigned to three experimental groups to be given a task with differin...
متن کاملDeep multi-task learning with low level tasks supervised at lower layers
In all previous work on deep multi-task learning we are aware of, all task supervisions are on the same (outermost) layer. We present a multi-task learning architecture with deep bi-directional RNNs, where different tasks supervision can happen at different layers. We present experiments in syntactic chunking and CCG supertagging, coupled with the additional task of POS-tagging. We show that it...
متن کاملبرچسبزنی نقش معنایی جملات فارسی با رویکرد یادگیری مبتنی بر حافظه
Abstract Extracting semantic roles is one of the major steps in representing text meaning. It refers to finding the semantic relations between a predicate and syntactic constituents in a sentence. In this paper we present a semantic role labeling system for Persian, using memory-based learning model and standard features. Our proposed system implements a two-phase architecture to first identify...
متن کاملEffects of cognitive functions on feedback request strategy and learning of a perceptual motor task
Taking individuals' cognitive abilities into consideration can play an important role in the initial stages of learning motor skills. So, the purpose of the present study was to investigate the effect of cognitive functions on feedback request strategy and learning of a perceptual motor task. A number of 60 university male students with a mean age of 22/4 years (SD = 1/99) were selected through...
متن کاملThe Relationship between Syntactic and Lexical Complexity in Speech Monologues of EFL Learners
: This study aims to explore the relationship between syntactic and lexical complexity and also the relationship between different aspects of lexical complexity. To this end, speech monologs of 35 Iranian high-intermediate learners of English on three different tasks (i.e. argumentation, description, and narration) were analyzed for correlations between one measure of sy...
متن کامل