Functional characterization and expression analyses of the glucose-specific AtSTP9 monosaccharide transporter in pollen of Arabidopsis.
نویسندگان
چکیده
A genomic clone and the corresponding cDNA of a new Arabidopsis monosaccharide transporter AtSTP9 were isolated. Transport analysis of the expressed protein in yeast showed that AtSTP9 is an energy-dependent, uncoupler-sensitive, high-affinity monosaccharide transporter with a K(m) for glucose in the micromolar range. In contrast to all previously characterized monosaccharide transporters, AtSTP9 shows an unusual specificity for glucose. Reverse transcriptase-polymerase chain reaction analyses revealed that AtSTP9 is exclusively expressed in flowers, and a more detailed approach using AtSTP9 promoter/reporter plants clearly showed that AtSTP9 expression is restricted to the male gametophyte. AtSTP9 expression is not found in other floral organs or vegetative tissues. Further localization on the cellular level using a specific antibody revealed that in contrast to the early accumulation of AtSTP9 transcripts in young pollen, the AtSTP9 protein is only found weakly in mature pollen but is most prominent in germinating pollen tubes. This preloading of pollen with mRNAs has been described for genes that are essential for pollen germination and/or pollen tube growth. The pollen-specific expression found for AtSTP9 is also observed for other sugar transporters and indicates that pollen development and germination require a highly regulated supply of sugars.
منابع مشابه
AtSTP6, a new pollen-specific H+-monosaccharide symporter from Arabidopsis.
This paper describes the molecular, kinetic, and physiological characterization of AtSTP6, a new member of the Arabidopsis H(+)/monosaccharide transporter family. The AtSTP6 gene (At3g05960) is interrupted by two introns and encodes a protein of 507 amino acids containing 12 putative transmembrane helices. Expression in yeast (Saccharomyces cerevisiae) shows that AtSTP6 is a high-affinity (K(m)...
متن کاملArabidopsis thaliana POLYOL/MONOSACCHARIDE TRANSPORTERS 1 and 2: fructose and xylitol/H+ symporters in pollen and young xylem cells
The genome of Arabidopsis thaliana contains six genes, AtPMT1 to AtPMT6 (Arabidopsis thaliana POLYOL/MONOSACCHARIDE TRANSPORTER 1-6), which form a distinct subfamily within the large family of more than 50 monosaccharide transporter-like (MST-like) genes. So far, only AtPMT5 [formerly named AtPLT5 (At3g18830)] has been characterized and was shown to be a plasma membrane-localized H(+)-symporter...
متن کاملIdentification and characterization of AtSTP14, a novel galactose transporter from Arabidopsis.
AtSTP14, a new Arabidopsis sugar transporter, was identified and characterized on the molecular and physiological level. Reverse transcriptase-PCR analyses and reporter plants demonstrate high AtSTP14 expression levels in the seed endosperm and in cotyledons, as well as in green leaves. Thus, unlike previously characterized monosaccharide transporters, AtSTP14 is expressed in both source and si...
متن کاملArabidopsis INOSITOL TRANSPORTER4 mediates high-affinity H+ symport of myoinositol across the plasma membrane.
Four genes of the Arabidopsis (Arabidopsis thaliana) monosaccharide transporter-like superfamily share significant homology with transporter genes previously identified in the common ice plant (Mesembryanthemum crystallinum), a model system for studies on salt tolerance of higher plants. These ice plant transporters had been discussed as tonoplast proteins catalyzing the inositol-dependent effl...
متن کاملMolecular identification and physiological characterization of a novel monosaccharide transporter from Arabidopsis involved in vacuolar sugar transport.
The tonoplast monosaccharide transporter (TMT) family comprises three isoforms in Arabidopsis thaliana, and TMT-green fluorescent protein fusion proteins are targeted to the vacuolar membrane. TMT promoter-beta-glucuronidase plants revealed that the TONOPLAST MONOSACCHARIDE TRANSPORTER1 (TMT1) and TMT2 genes exhibit a tissue- and cell type-specific expression pattern, whereas TMT3 is only weakl...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Plant physiology
دوره 133 1 شماره
صفحات -
تاریخ انتشار 2003