The effect of acquisition resolution on orientation decoding from V1 BOLD fMRI at 7 T

نویسندگان

  • Ayan Sengupta
  • Renat Yakupov
  • Oliver Speck
  • Stefan Pollmann
  • Michael Hanke
چکیده

A decade after it was shown that the orientation of visual grating stimuli can be decoded from human visual cortex activity by means of multivariate pattern classification of BOLD fMRI data, numerous studies have investigated which aspects of neuronal activity are reflected in BOLD response patterns and are accessible for decoding. However, it remains inconclusive what the effect of acquisition resolution on BOLD fMRI decoding analyses is. The present study is the first to provide empirical ultra high-field fMRI data recorded at four spatial resolutions (0.8mm, 1.4mm, 2mm, and 3mm isotropic voxel size) on this topic - in order to test hypotheses on the strength and spatial scale of orientation discriminating signals. We present detailed analysis, in line with predictions from previous simulation studies, about how the performance of orientation decoding varies with different acquisition resolutions. Moreover, we also examine different spatial filtering procedures and its effects on orientation decoding. Here we show that higher-resolution scans with subsequent down-sampling or low-pass filtering yield no benefit over scans natively recorded in the corresponding lower resolution regarding decoding accuracy. The orientation-related signal in the BOLD fMRI data is spatially broadband in nature, includes both high spatial frequency components, as well as large-scale biases previously proposed in the literature. Moreover, we found above chance-level contribution from large draining veins to orientation decoding. Acquired raw data were publicly released to facilitate further investigation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ultra high-field (7 T) multi-resolution fMRI data for orientation decoding in visual cortex

Multivariate pattern classification methods have been successfully applied to decode orientation of visual grating stimuli from BOLD fMRI activity recorded in human visual cortex (Kamitani and Tong, 2005; Haynes and Rees, 2005) [12], [10]. Though there has been extensive research investigating the true spatial scale of the orientation specific signals (Op de Beeck, 2010; Swisher et al., 2010; A...

متن کامل

Effect of Phase-Encoding Reduction on Geometric Distortion and BOLD Signal Changes in fMRI

Introduction Echo-planar imaging (EPI) is a group of fast data acquisition methods commonly used in fMRI studies. It acquires multiple image lines in k-space after a single excitation, which leads to a very short scan time. A well-known problem with EPI is that it is more sensitive to distortions due to the used encoding scheme. Source of distortion is inhomogeneity in the static B0 field that ...

متن کامل

Relationship between BOLD amplitude and pattern classification of orientation-selective activity in the human visual cortex

Orientation-selective responses can be decoded from fMRI activity patterns in the human visual cortex, using multivariate pattern analysis (MVPA). To what extent do these feature-selective activity patterns depend on the strength and quality of the sensory input, and might the reliability of these activity patterns be predicted by the gross amplitude of the stimulus-driven BOLD response? Observ...

متن کامل

fMRI orientation decoding in V1 does not require global maps or globally coherent orientation stimuli

The orientation of a large grating can be decoded from V1 functional magnetic resonance imaging (fMRI) data, even at low resolution (3-mm isotropic voxels). This finding has suggested that columnar-level neuronal information might be accessible to fMRI at 3T. However, orientation decodability might alternatively arise from global orientation-preference maps. Such global maps across V1 could res...

متن کامل

Spatial scale and distribution of neurovascular signals underlying decoding of orientation and eye of origin from fMRI data.

Multivariate pattern analysis of functional magnetic resonance imaging (fMRI) data is widely used, yet the spatial scales and origin of neurovascular signals underlying such analyses remain unclear. We compared decoding performance for stimulus orientation and eye of origin from fMRI measurements in human visual cortex with predictions based on the columnar organization of each feature and esti...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • NeuroImage

دوره 148  شماره 

صفحات  -

تاریخ انتشار 2017