Energy Transport in Stochastically Perturbed Lattice Dynamics Giada Basile, Stefano Olla, and Herbert Spohn

نویسنده

  • HERBERT SPOHN
چکیده

We consider lattice dynamics with a small stochastic perturbation of order ε and prove that for a space-time scale of order ε the local spectral density (Wigner function) evolves according to a linear transport equation describing inelastic collisions. For an energy and momentum conserving chain the transport equation predicts a slow decay, as 1/ √ t, for the energy current correlation in equilibrium. This is in agreement with previous studies using a different method.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Energy Transport in Stochastically Perturbed Lattice Dynamics

We consider lattice dynamics with a small stochastic perturbation of order ε and prove that for a space-time scale of order ε the local spectral density (Wigner function) evolves according to a linear transport equation describing inelastic collisions. For an energy and momentum conserving chain the transport equation predicts a slow decay, as 1/ √ t, for the energy current correlation in equil...

متن کامل

M ay 2 00 8 WIGNER FUNCTIONS AND STOCHASTICALLY PERTURBED LATTICE DYNAMICS

We consider lattice dynamics with a small stochastic perturbation of order ε and prove that for a space-time scale of order ε the Wigner function evolves according to a linear transport equation describing inelastic collisions. For an energy and momentum conserving chain the transport equation predicts a slow decay, as 1/ √ t, for the energy current correlation in equilibrium. This is in agreem...

متن کامل

Momentum conserving model with anomalous thermal conductivity in low dimensional systems.

Anomalous large thermal conductivity has been observed numerically and experimentally in one- and two-dimensional systems. There is an open debate about the role of conservation of momentum. We introduce a model whose thermal conductivity diverges in dimensions 1 and 2 if momentum is conserved, while it remains finite in dimension d > or = 3. We consider a system of harmonic oscillators perturb...

متن کامل

Thermal Conductivity for a Momentum Conserving Model

Abstract. We present here complete mathematical proofs of the results annouced in cond-mat/0509688. We introduce a model whose thermal conductivity diverges in dimension 1 and 2, while it remains finite in dimension 3. We consider a system of harmonic oscillators perturbed by a stochastic dynamics conserving momentum and energy. We compute the current-current time correlation function and the t...

متن کامل

Thermal Conductivity for a Momentum Conservative Model

Abstract. We introduce a model whose thermal conductivity diverges in dimension 1 and 2, while it remains finite in dimension 3. We consider a system of oscillators perturbed by a stochastic dynamics conserving momentum and energy. We compute thermal conductivity via GreenKubo formula. In the harmonic case we compute the current-current time correlation function, that decay like t in the unpinn...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008