Structure of LdtMt2, an l,d-transpeptidase from Mycobacterium tuberculosis

نویسندگان

  • Dominic Böth
  • Eva Maria Steiner
  • Daniela Stadler
  • Ylva Lindqvist
  • Robert Schnell
  • Gunter Schneider
چکیده

The transpeptidase LtdMt2 catalyzes the formation of the (3-3) cross-links characteristic of the peptidoglycan layer in the Mycobacterium tuberculosis cell wall. Bioinformatics analysis suggests that the extramembrane part of the enzyme consists of three domains: two smaller domains (denoted as A and B domains) and a transpeptidase domain (the C domain) at the C-terminus. The crystal structures of two fragments comprising the AB domains and the BC domains have been determined. The structure of the BC module, which was determined to 1.86 Å resolution using Se-SAD phasing, consists of the B domain with an immunoglobulin-related fold and the catalytic domain belonging to the ErfK/YbiS/YbnG fold family. The structure of the AB-domain fragment, which was solved by molecular replacement to 1.45 Å resolution, reveals that despite a lack of overall sequence identity the A domain is structurally very similar to the B domain. Combining the structures of the two fragments provides a view of the complete three-domain extramembrane part of LdtMt2 and shows that the protein extends at least 80-100 Å from the plasma membrane into the peptidoglycan layer and thus defines the maximal distance at which cross-links are formed by this enzyme. The LdtMt-related transpeptidases contain one or two immunoglobulin domains, which suggests that these might serve as extender units to position the catalytic domain at an appropriate distance from the membrane in the peptidoglycan layer.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Structural basis for the inhibition of Mycobacterium tuberculosis l,d-transpeptidase by meropenem, a drug effective against extensively drug-resistant strains

Difficulty in the treatment of tuberculosis and growing drug resistance in Mycobacterium tuberculosis (Mtb) are a global health issue. Carbapenems inactivate L,D-transpeptidases; meropenem, when administered with clavulanate, showed in vivo activity against extensively drug-resistant Mtb strains. LdtMt2 (Rv2518c), one of two functional L,D-transpeptidases in Mtb, is predominantly expressed over...

متن کامل

Toward antituberculosis drugs: in silico screening of synthetic compounds against Mycobacterium tuberculosisl,d-transpeptidase 2.

Mycobacterium tuberculosis (Mtb) the main causative agent of tuberculosis, is the main reason why this disease continues to be a global public health threat. It is therefore imperative to find a novel antitubercular drug target that is unique to the structural machinery or is essential to the growth and survival of the bacterium. One such target is the enzyme l,d-transpeptidase 2, also known as...

متن کامل

Simulating the inhibition reaction of Mycobacterium tuberculosis L,D-transpeptidase 2 by carbapenems.

A theoretical free energy study describes the inactivation of a new tuberculosis target, the l,d-transpeptidase 2 enzyme. A new reaction mechanism of two carbapenem inhibitors is proposed and their molecular features are determined using QM/MM and PMF approaches. The theoretical findings with the new proposed mechanism agree in principle with the experimental data.

متن کامل

Building a Full-Atom Model of L,Dtranspeptidase 2 from Mycobacterium tuberculosis for Screening New Inhibitors

L,D-transpeptidase 2 from Mycobacterium tuberculosis plays a key role in the formation of the cell wall of a pathogen and catalyzes the cross-linking of growing peptidoglycan chains by non-classical 3-3 bonds, which causes resistance to a broad spectrum of penicillins. Molecular modeling of enzyme interactions with the N- and C-terminal tetrapeptide fragments of growing peptidoglycan chains has...

متن کامل

The peptidoglycan of stationary-phase Mycobacterium tuberculosis predominantly contains cross-links generated by L,D-transpeptidation.

Our understanding of the mechanisms used by Mycobacterium tuberculosis to persist in a "dormant" state is essential to the development of therapies effective in sterilizing tissues. Gene expression profiling in model systems has revealed a complex adaptive response thought to endow M. tuberculosis with the capacity to survive several months of combinatorial antibiotic treatment. We show here th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 69  شماره 

صفحات  -

تاریخ انتشار 2013