Fast iterative solvers for buoyancy driven flow problems
نویسندگان
چکیده
We outline a new class of robust and efficient methods for solving the Navier–Stokes equations with a Boussinesq model for buoyancy driven flow. We describe a general solution strategy that has two basic building blocks: an implicit time integrator using a stabilized trapezoid rule with an explicit Adams–Bashforth method for error control, and a robust Krylov subspace solver for the spatially discretized system. We present numerical experiments illustrating the efficiency of the chosen preconditioning schemes with respect to the discretization parameters. 2011 Elsevier Inc. All rights reserved.
منابع مشابه
Effects of Viscosity Variations on Buoyancy-Driven Flow from a Horizontal Circular Cylinder Immersed in Al2O3-Water Nanofluid
The buoyancy-driven boundary-layer flow from a heated horizontal circular cylinder immersed in a water-based alumina (Al2O3) nanofluid is investigated using variable properties for nanofluid viscosity. Two different viscosity models are utilized to evaluate heat transfer enhancement from a cylinder. Exact analytic solutions of the problem are attained employing a novel...
متن کاملNonlinear Solver Based on Flux-function Trust-regions for Accurate Modeling of Co2 Plume Migration in Aquifers
We describe a Newton-based nonlinear solver for immiscible two-phase transport in the presence of significant viscous, buoyancy, and capillary forces. The evolution of CO2 plumes in heterogeneous saline aquifers, especially during the post-injection period, is an important example of this class of problem. The flux (fractional flow) function, which is strongly nonlinear function of saturation, ...
متن کاملLarge Scale Eigenvalue Calculations for Computing the Stability of Buoyancy Driven Flows
We present results for large scale linear stability analysis of buoyancy driven fluid flows using a parallel finite element CFD code (MPSalsa) along with a general purpose eigensolver (ARPACK). The goal of this paper is to examine both the capabilities and limitations of such an approach, with particular focus on solving large problems on massively parallel computers using iterative methods. We...
متن کاملOn Direct and Semi-Direct Inverse of Stokes, Helmholtz and Laplacian Operators in View of Time-Stepper-Based Newton and Arnoldi Solvers in Incompressible CFD
Factorization of the incompressible Stokes operator linking pressure and velocity is revisited. The main purpose is to use the inverse of the Stokes operator with a large time step as a preconditioner for Newton and Arnoldi iterations applied to computation of steady three-dimensional flows and study of their stability. It is shown that the Stokes operator can be inversed within an acceptable c...
متن کاملNumerical Investigation of Double- Diffusive Mixed Convective Flow in a Lid-Driven Enclosure Filled with Al2O3-Water Nanofluid
Double-diffusive mixed convection in a lid-driven square enclosure filled with Al2O3-water is numerically investigated. Two-dimensional nonlinear governing equations are discretized using the control volume method and hybrid scheme. The equations are solved using SIMPLER algorithm. The results are displayed in the form of streamlines, isotherms, and iso-concentrations when the Richardson number...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- J. Comput. Physics
دوره 230 شماره
صفحات -
تاریخ انتشار 2011