Blind homologous R2R3 Myb genes control the pattern of lateral meristem initiation in Arabidopsis.

نویسندگان

  • Dörte Müller
  • Gregor Schmitz
  • Klaus Theres
چکیده

In seed plants, shoot branching is initiated during postembryonic development by the formation of secondary meristems. These new meristems, which are established between the stem and leaf primordia, develop into vegetative branches or flowers. Thus, the number of axillary meristems has a major impact on plant architecture and reproductive success. This study describes the genetic control of axillary meristem formation in Arabidopsis thaliana by a group of three R2R3 Myb genes, which are homologous to the tomato (Solanum lycopersicum) Blind gene and were designated REGULATORS OF AXILLARY MERISTEMS (RAX). rax mutants show new phenotypes that are characterized by defects in lateral bud formation in overlapping zones along the shoot axis. RAX genes are partially redundant in function and allow a fine-tuning of secondary axis formation. As revealed by monitoring of SHOOT MERISTEMLESS transcript accumulation, the RAX genes control a very early step of axillary meristem initiation. The RAX1 and RAX3 expression domains specifically mark a cell group in the center of the leaf axil from which the axillary meristem develops. Double mutant combinations of lateral suppressor and rax1-3 as well as expression studies suggest that at least two pathways control the initiation of axillary meristems in Arabidopsis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Shoot branching and leaf dissection in tomato are regulated by homologous gene modules.

Aerial plant architecture is predominantly determined by shoot branching and leaf morphology, which are governed by apparently unrelated developmental processes, axillary meristem formation, and leaf dissection. Here, we show that in tomato (Solanum lycopersicum), these processes share essential functions in boundary establishment. Potato leaf (C), a key regulator of leaf dissection, was identi...

متن کامل

A subgroup of MYB transcription factor genes undergoes highly conserved alternative splicing in Arabidopsis and rice.

MYB transcription factor genes play important roles in many developmental processes and in various defence responses of plants. Two Arabidopsis R2R3-type MYB genes, AtMYB59 and AtMYB48, were found to undergo similar alternative splicing. Both genes have four distinctively spliced transcripts that encode either MYB-related proteins or R2R3-MYB proteins. An extensive BLAST search of the GenBank d...

متن کامل

Maize R2R3 Myb genes: Sequence analysis reveals amplification in the higher plants.

Transcription factors containing the Myb-homologous DNA-binding domain are widely found in eukaryotes. In plants, R2R3 Myb-domain proteins are involved in the control of form and metabolism. The Arabidopsis genome harbors >100 R2R3 Myb genes, but few have been found in monocots, animals, and fungi. Using RT-PCR from different maize organs, we cloned 480 fragments corresponding to a 42-44 residu...

متن کامل

Regulation of secondary cell wall biosynthesis by poplar R2R3 MYB transcription factor PtrMYB152 in Arabidopsis

Poplar has 192 annotated R2R3 MYB genes, of which only three have been shown to play a role in the regulation of secondary cell wall formation. Here we report the characterization of PtrMYB152, a poplar homolog of the Arabidopsis R2R3 MYB transcription factor AtMYB43, in the regulation of secondary cell wall biosynthesis. The expression of PtrMYB152 in secondary xylem is about 18 times of that ...

متن کامل

Functional Analysis of a Pomegranate (Punica granatum L.) MYB Transcription Factor Involved in the Regulation of Anthocyanin Biosynthesis

Background: Pomegranate fruit (Punica granatum L.) is a rich source of anthocyanin pigments resulting in vibrant colours and anti-oxidant contents. Although the intensity and pattern of anthocyanin biosynthesis in fruit are strongly influenced by R2R3-MYB transcription factors, little is known about the regulation and role of MYB in anthocyanin pathway of pomegranate. Objectives: The present st...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Plant cell

دوره 18 3  شماره 

صفحات  -

تاریخ انتشار 2006