Scaled memoryless symmetric rank one method for large-scale optimization

نویسندگان

  • Wah June Leong
  • Malik Abu Hassan
چکیده

This paper concerns the memoryless quasi-Newton method, that is precisely the quasi-Newton method for which the approximation to the inverse of Hessian, at each step, is updated from the identity matrix. Hence its search direction can be computed without the storage of matrices. In this paper, a scaled memoryless symmetric rank one (SR1) method for solving large-scale unconstrained optimization problems is developed. The basic idea is to incorporate the SR1 update within the framework of the memoryless quasi-Newton method. However, it is well-known that the SR1 update may not preserve positive definiteness even when updated from a positive definite matrix. Therefore we propose the memoryless SR1 method, which is updated from a positive scaled of the identity, where the scaling factor is derived in such a way that positive definiteness of the updating matrices are preserved and at the same time improves the condition of the scaled memoryless SR1 update. Under very mild conditions it is shown that, for strictly convex objective functions, the method is globally convergent with a linear rate of convergence. Numerical results show that the optimally scaled memoryless SR1 method is very encouraging.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Memoryless Modified Symmetric Rank-One Method for Large-Scale Unconstrained Optimization

Problem statement: Memoryless QN methods have been regarded effective techniques for solving large-scale problems that can be considered as one step limited memory QN methods. In this study, we present a scaled memoryless modified Symmetric Rank-One (SR1) algorithm and investigate the numerical performance of the proposed algorithm for solving large-scale unconstrained optimization problems. Ap...

متن کامل

Quasi-Newton acceleration for equality-constrained minimization

Optimality (or KKT) systems arise as primal-dual stationarity conditions for constrained optimization problems. Under suitable constraint qualifications, local minimizers satisfy KKT equations but, unfortunately, many other stationary points (including, perhaps, maximizers) may solve these nonlinear systems too. For this reason, nonlinear-programming solvers make strong use of the minimization ...

متن کامل

Measures for Symmetric Rank-One Updates

Measures of deviation of a symmetric positive deenite matrix from the identity are derived. They give rise to symmetric rank-one, SR1, type updates. The measures are motivated by considering the volume of the symmetric diierence of the two ellipsoids, which arise from the current and updated quadratic models in quasi-Newton methods. The measure deened by the problem-maximize the determinant sub...

متن کامل

Multi-steps Symmetric Rank-one Update for Unconstrained Optimization

In this paper, we present a generalized Symmetric Rank-one (SR1) method by employing interpolatory polynomials in order to possess a more accurate information from more than one previous step. The basic idea is to incorporate the SR1 update within the framework of multi-step methods. Hence iterates could be interpolated by a curve in such a way that the consecutive points define the curves. How...

متن کامل

A new quasi-Newton pattern search method based on symmetric rank-one update for unconstrained optimization

This paper proposes a new robust and quickly convergent pattern search method based on an implementation of OCSSR1 (Optimal Conditioning Based Self-Scaling Symmetric Rank-One) algorithm [M.R. Osborne, L.P. Sun, A new approach to symmetric rank-one updating, IMA Journal of Numerical Analysis 19 (1999) 497–507] for unconstrained optimization. This method utilizes the factorization of approximatin...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Applied Mathematics and Computation

دوره 218  شماره 

صفحات  -

تاریخ انتشار 2011