The Homotopy Orbit Spectrum for Profinite Groups
نویسنده
چکیده
Let G be a pro nite group. We de ne an S[[G]]-module to be a G-spectrum X that satis es certain conditions, and, given an S[[G]]-module X, we de ne the homotopy orbit spectrum XhG. When G is countably based and X satis es a certain niteness condition, we construct a homotopy orbit spectral sequence whose E2-term is the continuous homology of G with coefcients in the graded pro nite b Z[[G]]-module (X). Let Gn be the extended Morava stabilizer group and let En be the Lubin-Tate spectrum. As an application of our theory, we show that the function spectrum F (En; LK(n)(S 0)) is an S[[Gn]]-module with an associated homotopy orbit spectral sequence.
منابع مشابه
Continuous Group Actions on Profinite Spaces
For a profinite group, we construct a model structure on profinite spaces with a continuous action. We construct descent spectral sequences for the homotopy groups of the homotopy fixed point space and for the homology of homotopy orbit space which are strongly convergent for an arbitrary profinite group. Our main example is the Galois action on profinite étale topological types of schemes over...
متن کاملHomotopy fixed points for profinite groups emulate homotopy fixed points for discrete groups
If K is a discrete group and Z is a K-spectrum, then the homotopy fixed point spectrum Z is Map∗(EK+, Z) K , the fixed points of a familiar expression. Similarly, if G is a profinite group and X is a discrete G-spectrum, then X is often given by (HG,X), where HG,X is a certain explicit construction given by a homotopy limit in the category of discrete G-spectra. Thus, in each of two common equi...
متن کاملProfinite Homotopy Theory
We construct a model structure on simplicial profinite sets such that the homotopy groups carry a natural profinite structure. This yields a rigid profinite completion functor for spaces and pro-spaces. One motivation is the étale homotopy theory of schemes in which higher profinite étale homotopy groups fit well with the étale fundamental group which is always profinite. We show that the profi...
متن کاملContinuous Homotopy Fixed Points for Lubin-tate Spectra
We provide a new and conceptually simplified construction of continuous homotopy fixed point spectra for Lubin-Tate spectra under the action of the extended Morava stabilizer group. Moreover, our new construction of a homotopy fixed point spectral sequence converging to the homotopy groups of the homotopy fixed points of Lubin-Tate spectra is isomorphic to an Adams spectral sequence converging ...
متن کاملHOMOTOPY FIXED POINTS FOR LK(n)(En ∧X) USING THE CONTINUOUS ACTION
Let K(n) be the nth Morava K-theory spectrum. Let En be the Lubin-Tate spectrum, which plays a central role in understanding LK(n)(S 0), the K(n)-local sphere. For any spectrum X, define E∨(X) to be the spectrum LK(n)(En ∧ X). Let G be a closed subgroup of the profinite group Gn, the group of ring spectrum automorphisms of En in the stable homotopy category. We show that E∨(X) is a continuous G...
متن کامل