Algebraic models of deviant modal operators based on de Morgan and Kleene lattices
نویسندگان
چکیده
An algebraic model of a kind of modal extension of de Morgan logic is described under the name MDS5 algebra. The main properties of this algebra can be summarized as follows: (1) it is based on a de Morgan lattice, rather than a Boolean algebra; (2) a modal necessity operator that satisfies the axioms N , K, T , and 5 (and as a consequence also B and 4) of modal logic is introduced; it allows one to introduce a modal possibility by the usual combination of necessity operation and de Morgan negation; (3) the necessity operator satisfies a distributivity principle over joins. The latter property cannot be meaningfully added to the standard Boolean algebraic models of S5 modal logic, since in this Boolean context both modalities collapse in the identity mapping. The consistency of this algebraic model is proved, showing that usual fuzzy set theory on a universe U can be equipped with a MDS5 structure that satisfies all the above points (1)–(3), without the trivialization of the modalities to the identity mapping. Further, the relationship between this new algebra and Heyting-Wajsberg algebras is investigated. Finally, the question of the role of these deviant modalities, as opposed to the usual nondistributive ones, in the scope of knowledge representation and approximation spaces is discussed.
منابع مشابه
Dualities for modal N4-lattices
We introduce a new Priestley-style topological duality for N4-lattices, which are the algebraic counterpart of paraconsistent Nelson logic. Our duality differs from the existing one, due to S. Odintsov, in that we only rely on Esakia duality for Heyting algebras and not on the duality for De Morgan algebras of Cornish and Fowler. A major advantage of our approach is that we obtain a simple desc...
متن کاملPriestley duality for N4-lattices
We present a new Priestley-style topological duality for bounded N4-lattices, which are the algebraic counterpart of paraconsistent Nelson logic. Our duality differs from the existing one, due to Odintsov, in that we only rely on Esakia duality for Heyting algebras and not on the duality for De Morgan algebras of Cornish and Fowler. A major advantage of our approach is that for our topological ...
متن کاملPriestley duality for (modal) N4-lattices
N4-lattices are the algebraic semantics of paraconsistent Nelson logic, which was introduced in [1] as an inconsistency-tolerant counterpart of the better-known logic of Nelson [7, 13]. Paraconsistent Nelson logic combines interesting features of intuitionistic, classical and many-valued logics (e.g., Belnap-Dunn four-valued logic); recent work has shown that it can also be seen as one member o...
متن کاملQuantales and Temporal Logics
We propose an algebraic semantics for the temporal logic CTL∗ and simplify it for its sublogics CTL and LTL. We abstractly represent state and path formulas over transition systems in Boolean left quantales. These are complete lattices with a multiplication that preserves arbitrary joins in its left argument and is isotone in its right argument. Over these quantales, the semantics of CTL∗ formu...
متن کاملTermination in Modal Kleene Algebra
Modal Kleene algebras are Kleene algebras with forward and backward modal operators defined via domain and codomain operations. The paper investigates the algebraic structure of modal operators. It studies and compares different notions of termination in this class, including an algebraic correspondence proof of Löb’s formula from modal logic. It gives calculational proofs of two fundamental st...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Inf. Sci.
دوره 181 شماره
صفحات -
تاریخ انتشار 2011