On Bahadur Efficiency and Maximum Likelihood Estimation in General Parameter Spaces

نویسندگان

  • Xiaotong Shen
  • XIAOTONG SHEN
چکیده

The paper studies large deviations of maximum likelihood and related estimates in the case of i.i.d. observations with distribution determined by a parameter θ taking values in a general metric space. The main theorems provide sufficient conditions under which an approximate sieve maximum likelihood estimate is an asymptotically locally optimal estimate of g(θ) in the sense of Bahadur, for virtually all functions g of interest. These conditions are illustrated by application to several parametric, nonparametric, and semiparametric examples.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Evaluation of estimation methods for parameters of the probability functions in tree diameter distribution modeling

One of the most commonly used statistical models for characterizing the variations of tree diameter at breast height is Weibull distribution. The usual approach for estimating parameters of a statistical model is the maximum likelihood estimation (likelihood method). Usually, this works based on iterative algorithms such as Newton-Raphson. However, the efficiency of the likelihood method is not...

متن کامل

On Bahadur efficiency of empirical likelihood

This paper studies the Bahadur efficiency of empirical likelihood for testing moment condition models. It is shown that under mild regularity conditions, the empirical likelihood overidentifying restriction test is Bahadur efficient, i.e., its p-value attains the fastest convergence rate under each fixed alternative hypothesis. Analogous results are derived for parameter hypothesis testing and ...

متن کامل

Inference on Pr(X > Y ) Based on Record Values From the Power Hazard Rate Distribution

In this article, we consider the problem of estimating the stress-strength reliability $Pr (X > Y)$ based on upper record values when $X$ and $Y$ are two independent but not identically distributed random variables from the power hazard rate distribution with common scale parameter $k$. When the parameter $k$ is known, the maximum likelihood estimator (MLE), the approximate Bayes estimator and ...

متن کامل

On Bahadur Efficiency of the Maximum Likelihood Estimator in Hidden Markov Models

In this paper, we study large deviations of maximum likelihood and related estimators for hidden Markov models. A hidden Markov model consists of parameterized Markov chains in a Markovian random environment, with the underlying environmental Markov chain viewed as missing data. A difficulty with parameter estimation in this model is the non-additivity of the log-likelihood function. Based on a...

متن کامل

Hyperbolic Cosine Log-Logistic Distribution and Estimation of Its Parameters by Using Maximum Likelihood Bayesian and Bootstrap Methods

‎In this paper‎, ‎a new probability distribution‎, ‎based on the family of hyperbolic cosine distributions is proposed and its various statistical and reliability characteristics are investigated‎. ‎The new category of HCF distributions is obtained by combining a baseline F distribution with the hyperbolic cosine function‎. ‎Based on the base log-logistics distribution‎, ‎we introduce a new di...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003