Supereulerian planar graphs

نویسندگان

  • Hong-Jian Lai
  • Deying Li
  • Jingzhong Mao
  • Mingquan Zhan
چکیده

We investigate the supereulerian graph problems within planar graphs, and we prove that if a 2-edge-connected planar graph G is at most three edges short of having two edge-disjoint spanning trees, then G is supereulerian except a few classes of graphs. This is applied to show the existence of spanning Eulerian subgraphs in planar graphs with small edge cut conditions. We also determine several extremal bounds for planar graphs to be supereulerian.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Update on Supereulerian Graphs

A graph is supereulerian if it has a spanning Eulerian subgraph. Motivated by the Chinese Postman Problem, Boesch, Suffel, and Tindell ([2]) in 1997 proposed the supereulerian problem, which seeks a characterization of graphs that have spanning Eulerian subgraphs, and they indicated that this problem would be very difficult. Pulleyblank ([71]) later in 1979 proved that determining whether a gra...

متن کامل

Supereulerian graphs: A survey

A graph is supereulerian if it has a spanning eulerian subgraph. There is a reduction method to determine whether a graph is supereulerian, and it can also be applied to study other concepts, e.g., hamiltonian line graphs, a certain type of double cycle cover, and the total interval number of a graph. We outline the research on supereulerian graphs, the reduction method and its applications.

متن کامل

Supereulerian graphs and matchings

A graph G is called supereulerian if G has a spanning Eulerian subgraph. Let α(G) be the maximum number of independent edges in the graph G. In this paper, we show that if G is a 2-edge-connected simple graph and α(G) ≤ 2, then G is supereulerian if and only if G is not K2,t for some odd number t . © 2011 Elsevier Ltd. All rights reserved.

متن کامل

Sufficient Conditions for a Digraph to be Supereulerian

A (di)graph is supereulerian if it contains a spanning, connected, eulerian sub(di)graph. This property is a relaxation of hamiltonicity. Inspired by this analogy with hamiltonian cycles and by similar results in supereulerian graph theory, we give a number of sufficient Ore type conditions for a digraph to be supereulerian. Furthermore, we study the following conjecture due to Thomassé and the...

متن کامل

Supereulerian graphs with width s and s-collapsible graphs

For an integer s > 0 and for u, v ∈ V (G) with u ≠ v, an (s; u, v)-trail-system of G is a subgraphH consisting of s edge-disjoint (u, v)-trails. A graph is supereulerianwithwidth s if for any u, v ∈ V (G) with u ≠ v, G has a spanning (s; u, v)-trail-system. The supereulerian width μ(G) of a graph G is the largest integer s such that G is supereulerian with width k for every integer kwith 0 ≤ k ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Ars Comb.

دوره 75  شماره 

صفحات  -

تاریخ انتشار 2005