Algorithmic Statistics
نویسندگان
چکیده
While Kolmogorov complexity is the accepted absolute measure of information content of an individual finite object, a similarly absolute notion is needed for the relation between an individual data sample and an individual model summarizing the information in the data, for example, a finite set (or probability distribution) where the data sample typically came from. The statistical theory based on such relations between individual objects can be called algorithmic statistics, in contrast to ordinary statistical theory that deals with relations between probabilistic ensembles. Since the algorithmic theory deals with individual objects and not with averages over ensembles of objects it is surprising that similar properties hold, albeit sometimes in weaker form. We first recall the notion of algorithmic mutual information between individual objects and show that this information cannot be increased by algorithmic or probabilistic means (as is the case with probabilistic mutual information). We develop the algorithmic theory of typical statistic, sufficient statistic, and minimal sufficient statistic. This theory is based on two-part codes consisting of the code for the statistic (the model embodying the regularities, the meaningful information, in the data) and the model-to-data code. In contrast to the situation in probabilistic statistical theory, the algorithmic relation of (minimal) sufficiency is an absolute relation between the individual model and the individual data sample. We distinguish implicit and explicit descriptions of the models. We give characterizations of algorithmic (a.k.a. Kolmogorov) minimal sufficient statistics for all data samples for both description modes—in the explicit mode under some constraints. We also strengthen and elaborate some earlier results by Shen on the “Kolmogorov structure function” and “absolutely non-stochastic objects”—objects that have no simpler algorithmic (explicit) sufficient statistics and are literally their own algorithmic (explicit) minimal sufficient statistics. We discuss the implication of the results for potential applications.
منابع مشابه
Parallel Genetic Algorithm Using Algorithmic Skeleton
Algorithmic skeleton has received attention as an efficient method of parallel programming in recent years. Using the method, the programmer can implement parallel programs easily. In this study, a set of efficient algorithmic skeletons is introduced for use in implementing parallel genetic algorithm (PGA).A performance modelis derived for each skeleton that makes the comparison of skeletons po...
متن کاملProbabilistic Sufficiency and Algorithmic Sufficiency from the point of view of Information Theory
Given the importance of Markov chains in information theory, the definition of conditional probability for these random processes can also be defined in terms of mutual information. In this paper, the relationship between the concept of sufficiency and Markov chains from the perspective of information theory and the relationship between probabilistic sufficiency and algorithmic sufficien...
متن کاملAlgorithmic Statistics, Prediction and Machine Learning
Algorithmic statistics considers the following problem: given a binary string x (e.g., some experimental data), find a “good” explanation of this data. It uses algorithmic information theory to define formally what is a good explanation. In this paper we extend this framework in two directions. First, the explanations are not only interesting in themselves but also used for prediction: we want ...
متن کاملNatural scene statistics mediate the perception of image complexity
Humans are sensitive to complexity and regularity in patterns [YKM13, FK97]. The subjective perception of pattern complexity is correlated to algorithmic (Kolmogorov-Chaitin) complexity as defined in computer science [LV08], but also to the frequency of naturally occurring patterns [HGS10]. However, the possible mediational role of natural frequencies in the perception of algorithmic complexity...
متن کاملParallel Genetic Algorithm Using Algorithmic Skeleton
Algorithmic skeleton has received attention as an efficient method of parallel programming in recent years. Using the method, the programmer can implement parallel programs easily. In this study, a set of efficient algorithmic skeletons is introduced for use in implementing parallel genetic algorithm (PGA).A performance modelis derived for each skeleton that makes the comparison of skeletons po...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- IEEE Trans. Information Theory
دوره 47 شماره
صفحات -
تاریخ انتشار 2001