Polynomial bounds for equivalence of quadratic forms with cube - free determinant
نویسنده
چکیده
Given two integrally equivalent integral quadratic forms in at least three variables and with cube-free determinant, we establish an upper bound on the smallest unimodular matrix transforming one of the forms into the other. This bound is polynomial in the height of the two forms involved, confirming a conjecture of Masser for the class of forms considered.
منابع مشابه
Some Probability Inequalities for Quadratic Forms of Negatively Dependent Subgaussian Random Variables
In this paper, we obtain the upper exponential bounds for the tail probabilities of the quadratic forms for negatively dependent subgaussian random variables. In particular the law of iterated logarithm for quadratic forms of independent subgaussian random variables is generalized to the case of negatively dependent subgaussian random variables.
متن کاملFiniteness results for regular ternary quadratic polynomials
In 1924, Helmut Hasse established a local-to-global principle for representations of rational quadratic forms. Unfortunately, an analogous local-to-global principle does not hold for representations over the integers. A quadratic polynomial is called regular if such a principle exists; that is, if it represents all the integers which are represented locally by the polynomial itself over Zp for ...
متن کاملGlobal convergence of an inexact interior-point method for convex quadratic symmetric cone programming
In this paper, we propose a feasible interior-point method for convex quadratic programming over symmetric cones. The proposed algorithm relaxes the accuracy requirements in the solution of the Newton equation system, by using an inexact Newton direction. Furthermore, we obtain an acceptable level of error in the inexact algorithm on convex quadratic symmetric cone programmin...
متن کاملCohomological invariants in Galois cohomology, by Skip Garibaldi, Alexander
Quadratic forms q(x1, . . . , xn) over a field k are the classical examples of nonlinear scalar-valued functions on a vector space V = k, and they lie at the foundation of nineteenth-century analytic geometry. Motivated by problems such as finding the axes of a conic, geometers studied quadratic forms under symmetries of V . Given two quadratic forms q, q′ on V , how may we tell if q and q′ are...
متن کاملExplicit equivalence of quadratic forms over $\mathbb{F}_q(t)$
We propose a randomized polynomial time algorithm for computing nontrivial zeros of quadratic forms in 4 or more variables over Fq(t), where Fq is a finite field of odd characteristic. The algorithm is based on a suitable splitting of the form into two forms and finding a common value they both represent. We make use of an effective formula on the number of fixed degree irreducible polynomials ...
متن کامل