Differential regulation of myofilament protein isoforms underlying the contractility changes in skeletal muscle unloading.

نویسندگان

  • Zhi Bin Yu
  • Fang Gao
  • Han Zhong Feng
  • Jian-Ping Jin
چکیده

Weight-bearing skeletal muscles change phenotype in response to unloading. Using the hindlimb suspension rat model, we investigated the regulation of myofilament protein isoforms in correlation to contractility. Four weeks of continuous hindlimb unloading produced progressive atrophy and contractility changes in soleus but not extensor digitorum longus muscle. The unloaded soleus muscle also had decreased fatigue resistance. Along with the decrease of myosin heavy chain isoform I and IIa and increase of IIb and IIx, coordinated regulation of thin filament regulatory protein isoforms were observed: gamma- and beta-tropomyosin decreased and alpha-tropomyosin increased, resulting in an alpha/beta ratio similar to that in normal fast twitch skeletal muscle; troponin I and troponin T (TnT) both showed decrease in the slow isoform and increases in the fast isoform. The TnT isoform switching began after 7 days of unloading and TnI isoform showed detectable changes at 14 days while other protein isoform changes were not significant until 28 days of treatment. Correlating to the early changes in contractility, especially the resistance to fatigue, the early response of TnT isoform regulation may play a unique role in the adaptation of skeletal muscle to unloading. When the fast TnT gene expression was upregulated in the unloaded soleus muscle, alternative RNA splicing switched to produce more high molecular weight acidic isoforms, reflecting a potential compensation for the decrease of slow TnT that is critical to skeletal muscle function. The results demonstrate that differential regulation of TnT isoforms is a sensitive mechanism in muscle adaptation to functional demands.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Thick filament length and isoform composition determine self-organized contractile units in actomyosin bundles.

Diverse myosin II isoforms regulate contractility of actomyosin bundles in disparate physiological processes by variations in both motor mechanochemistry and the extent to which motors are clustered into thick filaments. Although the role of mechanochemistry is well appreciated, the extent to which thick filament length regulates actomyosin contractility is unknown. Here, we study the contracti...

متن کامل

Adaptation by alternative RNA splicing of slow troponin T isoforms in type 1 but not type 2 Charcot-Marie-Tooth disease.

Slow troponin T (TnT) plays an indispensable role in skeletal muscle function. Alternative RNA splicing in the NH(2)-terminal region produces high-molecular-weight (HMW) and low-molecular-weight (LMW) isoforms of slow TnT. Normal adult slow muscle fibers express mainly HMW slow TnT. Charcot-Marie-Tooth disease (CMT) is a group of inherited peripheral polyneuropathies caused by various neuronal ...

متن کامل

Carbonic Anhydrase III Is Expressed in Mouse Skeletal Muscles Independent of Fiber Type-Specific Myofilament Protein Isoforms and Plays a Role in Fatigue Resistance

Carbonic anhydrase III (CAIII) is a metabolic enzyme and a regulator for intracellular pH. CAIII has been reported with high level expression in slow twitch skeletal muscles. Here we demonstrate that CAIII is expressed in multiple slow and fast twitch muscles of adult mouse independent of the expression of myosin isoforms. Expressing similar fast type of myofilament proteins, CAIII-positive tib...

متن کامل

Molecular determinants of force production in human skeletal muscle fibers: effects of myosin isoform expression and cross-sectional area.

Skeletal muscle contractile performance is governed by the properties of its constituent fibers, which are, in turn, determined by the molecular interactions of the myofilament proteins. To define the molecular determinants of contractile function in humans, we measured myofilament mechanics during maximal Ca(2+)-activated and passive isometric conditions in single muscle fibers with homogenous...

متن کامل

Challenges in Skeletal Muscle Physiology

in this area, especially the physiological significance of the full range of interactions within and between thick and thin filament proteins. An ultimate challenge is to develop a comprehensive model of conformational changes of thick and thin filament proteins and of intermolecular interactions underlying activation, as well as force generation and shortening, in skeletal muscle with high tem...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • American journal of physiology. Cell physiology

دوره 292 3  شماره 

صفحات  -

تاریخ انتشار 2007