Novel Myopia Genes and Pathways Identified From Syndromic Forms of Myopia
نویسندگان
چکیده
Purpose To test the hypothesis that genes known to cause clinical syndromes featuring myopia also harbor polymorphisms contributing to nonsyndromic refractive errors. Methods Clinical phenotypes and syndromes that have refractive errors as a recognized feature were identified using the Online Mendelian Inheritance in Man (OMIM) database. One hundred fifty-four unique causative genes were identified, of which 119 were specifically linked with myopia and 114 represented syndromic myopia (i.e., myopia and at least one other clinical feature). Myopia was the only refractive error listed for 98 genes and hyperopia and the only refractive error noted for 28 genes, with the remaining 28 genes linked to phenotypes with multiple forms of refractive error. Pathway analysis was carried out to find biological processes overrepresented within these sets of genes. Genetic variants located within 50 kb of the 119 myopia-related genes were evaluated for involvement in refractive error by analysis of summary statistics from genome-wide association studies (GWAS) conducted by the CREAM Consortium and 23andMe, using both single-marker and gene-based tests. Results Pathway analysis identified several biological processes already implicated in refractive error development through prior GWAS analyses and animal studies, including extracellular matrix remodeling, focal adhesion, and axon guidance, supporting the research hypothesis. Novel pathways also implicated in myopia development included mannosylation, glycosylation, lens development, gliogenesis, and Schwann cell differentiation. Hyperopia was found to be linked to a different pattern of biological processes, mostly related to organogenesis. Comparison with GWAS findings further confirmed that syndromic myopia genes were enriched for genetic variants that influence refractive errors in the general population. Gene-based analyses implicated 21 novel candidate myopia genes (ADAMTS18, ADAMTS2, ADAMTSL4, AGK, ALDH18A1, ASXL1, COL4A1, COL9A2, ERBB3, FBN1, GJA1, GNPTG, IFIH1, KIF11, LTBP2, OCA2, POLR3B, POMT1, PTPN11, TFAP2A, ZNF469). Conclusions Common genetic variants within or nearby genes that cause syndromic myopia are enriched for variants that cause nonsyndromic, common myopia. Analysis of syndromic forms of refractive errors can provide new insights into the etiology of myopia and additional potential targets for therapeutic interventions.
منابع مشابه
Insight into the molecular genetics of myopia
Myopia is the most common cause of visual impairment worldwide. Genetic and environmental factors contribute to the development of myopia. Studies on the molecular genetics of myopia are well established and have implicated the important role of genetic factors. With linkage analysis, association studies, sequencing analysis, and experimental myopia studies, many of the loci and genes associate...
متن کاملGenome-Wide Analysis Points to Roles for Extracellular Matrix Remodeling, the Visual Cycle, and Neuronal Development in Myopia
Myopia, or nearsightedness, is the most common eye disorder, resulting primarily from excess elongation of the eye. The etiology of myopia, although known to be complex, is poorly understood. Here we report the largest ever genome-wide association study (45,771 participants) on myopia in Europeans. We performed a survival analysis on age of myopia onset and identified 22 significant association...
متن کاملA Case Report of Topiramate-induced Acute Myopia
Acute myopia following use of some drugs is a relatively rare condition. Topiramate prescribed for seizure prophylaxis is one of these drugs. In this paper a case of acute transient myopia after taking topiramate is reported. The reported patient is a 28-year old woman who had no history of any eye disease. Following consumption of topiramate pill for one week, she had found blurred vision ...
متن کاملSLC39A5 mutations interfering with the BMP/TGF-β pathway in non-syndromic high myopia
BACKGROUND High myopia, with the characteristic feature of refractive error, is one of the leading causes of blindness worldwide. It has a high heritability, but only a few causative genes have been identified and the pathogenesis is still unclear. METHODS We used whole genome linkage and exome sequencing to identify the causative mutation in a non-syndromic high myopia family. Direct Sanger ...
متن کاملGenetic linkage study of high-grade myopia in a Hutterite population from South Dakota
PURPOSE Myopia is a common, complex disorder, and severe forms have implications for blindness due to increased risk of premature cataracts, glaucoma, retinal detachment, and macular degeneration. Autosomal dominant (AD) non-syndromic high-grade myopia has been mapped to chromosomes 18p11.31, 12q21-23, 17q21-23, 7q36, 2q37.1, 7p15.3, 15q12-13, 3q26, 4q12, 8p23, 4q22-q27, 1p36, and Xq23-q25. Her...
متن کامل