Implementation of absolute quantification in small‐animal SPECT imaging: Phantom and animal studies
نویسندگان
چکیده
PURPOSE Presence of photon attenuation severely challenges quantitative accuracy in single-photon emission computed tomography (SPECT) imaging. Subsequently, various attenuation correction methods have been developed to compensate for this degradation. The present study aims to implement an attenuation correction method and then to evaluate quantification accuracy of attenuation correction in small-animal SPECT imaging. METHODS Images were reconstructed using an iterative reconstruction method based on the maximum-likelihood expectation maximization (MLEM) algorithm including resolution recovery. This was implemented in our designed dedicated small-animal SPECT (HiReSPECT) system. For accurate quantification, the voxel values were converted to activity concentration via a calculated calibration factor. An attenuation correction algorithm was developed based on the first-order Chang's method. Both phantom study and experimental measurements with four rats were used in order to validate the proposed method. RESULTS The phantom experiments showed that the error of -15.5% in the estimation of activity concentration in a uniform region was reduced to +5.1% when attenuation correction was applied. For in vivo studies, the average quantitative error of -22.8 ± 6.3% (ranging from -31.2% to -14.8%) in the uncorrected images was reduced to +3.5 ± 6.7% (ranging from -6.7 to +9.8%) after applying attenuation correction. CONCLUSION The results indicate that the proposed attenuation correction algorithm based on the first-order Chang's method, as implemented in our dedicated small-animal SPECT system, significantly improves accuracy of the quantitative analysis as well as the absolute quantification.
منابع مشابه
Evaluation of the performance of parallel-hole collimator for high resolution small animal SPECT: A Monte Carlo study
Introduction: Image quality and accuracy of in vivo activity quantification in SPECT are affected by collimator penetration and scatter components, especially in high energy imaging. These phenomena highly depend on the collimator characteristic and photon energy. The presence of penetrated and scattered photons from collimator in SPECT images degrades spatial resolution, contr...
متن کاملInvestigation of Attenuation Correction for Small-Animal Single Photon Emission Computed Tomography
The quantitative accuracy of SPECT is limited by photon attenuation and scatter effect when photons interact with atoms. In this study, we developed a new attenuation correction (AC) method, CT-based mean attenuation correction (CTMAC) method, and compared it with various methods that were often used currently to assess the AC phenomenon by using the small-animal SPECT/CT data that were acquire...
متن کاملUse of a Ray-Based Reconstruction Algorithm to Accurately Quantify Preclinical MicroSPECT Images.
This work aimed to measure the in vivo quantification errors obtained when ray-based iterative reconstruction is used in micro-single-photon emission computed tomography (SPECT). This was investigated with an extensive phantom-based evaluation and two typical in vivo studies using 99mTc and 111In, measured on a commercially available cadmium zinc telluride (CZT)-based small-animal scanner. Iter...
متن کاملQuantitative SPECT and planar 32P bremsstrahlung imaging for dosimetry purpose –An experimental phantom study
Background: In this study, Quantitative 32P bremsstrahlung planar and SPECT imaging and consequent dose assessment were carried out as a comprehensive phantom study to define an appropriate method for accurate Dosimetry in clinical practice. Materials and Methods: CT, planar and SPECT bremsstrahlung images of Jaszczak phantom containing a known activity of 32P were acquired. In addition, Phanto...
متن کاملQuantitative Accuracy of Low-Count SPECT Imaging in Phantom and In Vivo Mouse Studies
We investigated the accuracy of a single photon emission computed tomography (SPECT) system in quantifying a wide range of radioactivity concentrations using different scan times in both phantom and animal models. A phantom containing various amounts of In-111 or Tc-99m was imaged until the activity had decayed close to background levels. Scans were acquired for different durations, employing d...
متن کامل