Elemental Spiking Neuron Model for Reproducing Diverse Firing Patterns and Predicting Precise Firing Times

نویسندگان

  • Satoshi Yamauchi
  • Hideaki Kim
  • Shigeru Shinomoto
چکیده

In simulating realistic neuronal circuitry composed of diverse types of neurons, we need an elemental spiking neuron model that is capable of not only quantitatively reproducing spike times of biological neurons given in vivo-like fluctuating inputs, but also qualitatively representing a variety of firing responses to transient current inputs. Simplistic models based on leaky integrate-and-fire mechanisms have demonstrated the ability to adapt to biological neurons. In particular, the multi-timescale adaptive threshold (MAT) model reproduces and predicts precise spike times of regular-spiking, intrinsic-bursting, and fast-spiking neurons, under any fluctuating current; however, this model is incapable of reproducing such specific firing responses as inhibitory rebound spiking and resonate spiking. In this paper, we augment the MAT model by adding a voltage dependency term to the adaptive threshold so that the model can exhibit the full variety of firing responses to various transient current pulses while maintaining the high adaptability inherent in the original MAT model. Furthermore, with this addition, our model is actually able to better predict spike times. Despite the augmentation, the model has only four free parameters and is implementable in an efficient algorithm for large-scale simulation due to its linearity, serving as an element neuron model in the simulation of realistic neuronal circuitry.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Improving the Izhikevich Model Based on Rat Basolateral Amygdala and Hippocampus Neurons, and Recognizing Their Possible Firing Patterns

Introduction: Identifying the potential firing patterns following different brain regions under normal and abnormal conditions increases our understanding of events at the level of neural interactions in the brain. Furthermore, it is important to be capable of modeling the potential neural activities to build precise artificial neural networks. The Izhikevich model is one of the simplest biolog...

متن کامل

Does High Firing Irregularity Enhance Learning?

In this note, we demonstrate that the high firing irregularity produced by the leaky integrate-and-fire neuron with the partial somatic reset mechanism, which has been shown to be the most likely candidate to reflect the mechanism used in the brain for reproducing the highly irregular cortical neuron firing at high rates (Bugmann, Christodoulou, & Taylor, 1997; Christodoulou & Bugmann, 2001), e...

متن کامل

Glutamate gated spiking Neuron Model

BACKGROUND Biological neuron models mainly analyze the behavior of neural networks. Neurons are described in terms of firing rates viz an analog signal. PURPOSE The Izhikevich neuron model is an efficient, powerful model of spiking neuron. This model is a reduction of Hodgkin-Huxley model to a two variable system and is capable of producing rich firing patterns for many biological neurons. ...

متن کامل

Pattern Recognition Using Spiking Neurons and Firing Rates

Different varieties of artificial neural networks have proved their power in several pattern recognition problems, particularly feedforward neural networks. Nevertheless, these kinds of neural networks require of several neurons and layers in order to success when they are applied to solve non-linear problems. In this paper is shown how a spiking neuron can be applied to solve different linear ...

متن کامل

Biophysical vs reduced rate models for predicting retinal ganglion cell spike trains

Retinal ganglion cells (RGCs) respond to spatiotemporal patterns falling on photoreceptors by firing spike trains with an exquisitely precise temporal structure. Existing models of RGCs are reduced input-output models of light intensity or other features (eg contrast), but contain no biophysical parameters for a single RGC. These models, such as the stochastic integrate and fire (IF) and linear...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2011