Physiological stimulation regulates the exocytic mode through calcium activation of protein kinase C in mouse chromaffin cells.

نویسندگان

  • Tiberiu Fulop
  • Corey Smith
چکیده

Adrenal medullary chromaffin cells release catecholamines and neuropeptides in an activity-dependent manner controlled by the sympathetic nervous system. Under basal sympathetic tone, catecholamines are preferentially secreted. During acute stress, increased sympathetic firing evokes release of both catecholamines as well as neuropeptides. Both signalling molecules are co-packaged in the same large dense core granules, thus release of neuropeptide transmitters must be regulated after granule fusion with the cell surface. Previous work has indicated this may be achieved through a size-exclusion mechanism whereby, under basal sympathetic firing, the catecholamines are selectively released through a restricted fusion pore, while less-soluble neuropeptides are left behind in the dense core. Only under the elevated firing experienced during the sympathetic stress response do the granules fully collapse to expel catecholamines and neuropeptides. However, mechanistic description and physiological regulation of this process remain to be determined. We employ electrochemical amperometry, fluid-phase dye uptake and electrophysiological capacitance noise analysis to probe the fusion intermediate in mouse chromaffin cells under physiological electrical stimulation. We show that basal firing rates result in the selective release of catecholamines through an Omega-form 'kiss and run' fusion event characterized by a narrow fusion pore. Increased firing raises calcium levels and activates protein kinase C, which then promotes fusion pore dilation until full granule collapse occurs. Our results demonstrate that the transition between 'kiss and run' and 'full collapse' exocytosis serves a vital physiological regulation in neuroendocrine chromaffin cells and help effect a proper acute stress response.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Activation of calcium/calmodulin-dependent kinase II following bovine rotavirus enterotoxin NSP4 expression

Objective(s): The rotavirus nonstructural protein 4 (NSP4) is responsible for the increase in cytoplasmic calcium concentration through a phospholipase C-dependent and phospholipase C-independent pathways in infected cells. It is shown that increasing of intracellular calcium concentration in rotavirus infected cells is associated with the activation of some members of protein kinases family su...

متن کامل

Intracellular signaling mechanisms mediating catecholamine release upon activation of NPY Y1 receptors in mouse chromaffin cells.

The adrenal chromaffin cells synthesize and release catecholamine (mostly epinephrine and norepinephrine) and different peptides, such as the neuropeptide Y (NPY). NPY stimulates catecholamine release through NPY Y1 receptor in mouse chromaffin cells. The aim of our study was to determine the intracellular signaling events coupled to NPY Y1 receptor activation that lead to stimulation of catech...

متن کامل

Myosin II activation and actin reorganization regulate the mode of quantal exocytosis in mouse adrenal chromaffin cells.

Chromaffin cells of the adrenal medulla are innervated by the sympathetic nervous system. Stimulation causes chromaffin cells to fire action potentials, leading to the exocytosis of various classes of transmitters into the circulation. Low-frequency electrical stimulation (action potentials delivered at 0.5 Hz) causes adrenal chromaffin cells to selectively release catecholamines through a kiss...

متن کامل

Retraction for Cortical F-Actin, the Exocytic Mode, and Neuropeptide Release in Mouse Chromaffin Cells Is Regulated by Myristoylated Alanine-rich C-Kinase Substrate and Myosin II

The authors of “Cortical F-Actin, the Exocytic Mode, and Neuropeptide Release in Mouse Chromaffin Cells Is Regulated by Myristoylated Alanine-rich C-Kinase Substrate and Myosin II” (Mol Biol Cell [2009] 20, 3142–3154; doi:10.1091/mbc.E09-03-0197) wish to retract the paper. The retraction arises from a finding by the U.S. Department of Health and Human Services Office of Research Integrity (2013...

متن کامل

Stimulus coupling to transcription versus secretion in pheochromocytoma cells. Convergent and divergent signal transduction pathways and the crucial roles for route of cytosolic calcium entry and protein kinase C.

How do chromaffin cell secretory stimuli program resynthesis of secreted peptides and amines? We previously showed that the physiologic nicotinic cholinergic signal for secretion also activates the biosynthesis of chromogranin A, the major protein released with catecholamines. Here, we examine signal transduction pathways whereby secretory stimuli influence exocytotic secretion versus chromogra...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Biochemical journal

دوره 399 1  شماره 

صفحات  -

تاریخ انتشار 2006