Continuous Shearlet Frames and Resolution of the Wavefront Set
نویسنده
چکیده
In recent years directional multiscale transformations like the curveletor shearlet transformation have gained considerable attention. The reason for this is that these transforms are unlike more traditional transforms like wavelets able to efficiently handle data with features along edges. The main result confirming this property for shearlets is contained in [21] where it is shown that for very special functions ψ with frequency support in a compact conical wegde the decay rate of the shearlet coefficients of a tempered distribution f with respect to the shearlet ψ can resolve the Wavefront Set of f . We show an analogous result where the only requirement we impose on ψ is essentially to possess sufficiently many anisotropic vanishing moments. We also show how to build frames for L(R) from any such function.
منابع مشابه
Resolution of the Wavefront Set Using Continuous Shearlets
It is known that the Continuous Wavelet Transform of a distribution f decays rapidly near the points where f is smooth, while it decays slowly near the irregular points. This property allows the identification of the singular support of f . However, the Continuous Wavelet Transform is unable to describe the geometry of the set of singularities of f and, in particular, identify the wavefront set...
متن کامل$p$-adic Dual Shearlet Frames
We introduced the continuous and discrete $p$-adic shearlet systems. We restrict ourselves to a brief description of the $p$-adic theory and shearlets in real case. Using the group $G_p$ consist of all $p$-adic numbers that all of its elements have a square root, we defined the continuous $p$-adic shearlet system associated with $L^2left(Q_p^{2}right)$. The discrete $p$-adic shearlet frames for...
متن کاملp-adic Shearlets
The field $Q_{p}$ of $p$-adic numbers is defined as the completion of the field of the rational numbers $Q$ with respect to the $p$-adic norm $|.|_{p}$. In this paper, we study the continuous and discrete $p-$adic shearlet systems on $L^{2}(Q_{p}^{2})$. We also suggest discrete $p-$adic shearlet frames. Several examples are provided.
متن کاملConstruction of continuous $g$-frames and continuous fusion frames
A generalization of the known results in fusion frames and $g$-frames theory to continuous fusion frames which defined by M. H. Faroughi and R. Ahmadi, is presented in this study. Continuous resolution of the identity (CRI) is introduced, a new family of CRI is constructed, and a number of reconstruction formulas are obtained. Also, new results are given on the duality of continuous fusion fram...
متن کاملClassification of Edges using Compactly Supported Shearlets
We analyze the detection and classification of singularities of functions f = χB , where B ⊂ R and d = 2, 3. It will be shown how the set ∂B can be extracted by a continuous shearlet transform associated with compactly supported shearlets. Furthermore, if ∂S is a d−1 dimensional piecewise smooth manifold with d = 2 or 3, we will classify smooth and non-smooth components of ∂S. This improves pre...
متن کامل