Graphene–Metal Composite Sensors with Near-Zero Temperature Coefficient of Resistance
نویسندگان
چکیده
This article describes the design of piezoresistive thin-film sensors based on single-layer graphene decorated with metallic nanoislands. The defining characteristic of these composite thin films is that they can be engineered to exhibit a temperature coefficient of resistance (TCR) that is close to zero. A mechanical sensor with this property is stable against temperature fluctuations of the type encountered during operations in the real world, for example, in a wearable sensor. The metallic nanoislands are grown on graphene through thermal deposition of metals (gold or palladium) at a low nominal thickness. Metallic films exhibit an increase in resistance with temperature (positive TCR), whereas graphene exhibits a decrease in resistance with temperature (negative TCR). By varying the amount of deposition, the morphology of the nanoislands can be tuned such that the TCRs of a metal and graphene cancel out. The quantitative analysis of scanning electron microscope images reveals the importance of the surface coverage of the metal (as opposed to the total mass of the metal deposited). The stability of the sensor to temperature fluctuations that might be encountered in the outdoors is demonstrated by subjecting a wearable pulse sensor to simulated solar irradiation.
منابع مشابه
Reduced graphene oxide and graphene composite materials for improved gas sensing at low temperature.
Reduced graphene oxide (rGO) was investigated as a material for use in chemiresistive gas sensors. The carbon nanomaterial was transferred onto a silicon wafer with interdigital gold electrodes. Spin coating turned out to be the most reliable transfer technique, resulting in consistent rGO layers of reproducible quality. Fast changes in the electrical resistance at a low operating temperature o...
متن کاملAnalysis of Hollow Fiber Temperature Sensor Filled with Graphene-Ag Composite Nanowire and Liquid
A hollow fiber temperature sensor filled with graphene-Ag composite nanowire and liquid is presented and numerically characterized. The coupling properties and sensing performances are analyzed by finite element method (FEM) using both wavelength and amplitude interrogations. Due to the asymmetrical surface plasmon resonance sensing (SPR) region, the designed sensor exhibits strong birefringenc...
متن کاملSmart conducting polymer composites having zero temperature coefficient of resistance.
Zero temperature coefficient of resistance (TCR) is essential for the precise control of temperature in heating element and sensor applications. Many studies have focused on developing zero-TCR systems with inorganic compounds; however, very few have dealt with developing zero-TCR systems with polymeric materials. Composite systems with a polymer matrix and a conducting filler show either a neg...
متن کاملGraphene bimetallic-like cantilevers: probing graphene/substrate interactions.
The remarkable mechanical properties of graphene, the thinnest, lightest, and strongest material in existence, are desirable in applications ranging from composite materials to sensors and actuators. Here, we demonstrate that these mechanical properties are strongly affected by the interaction with the substrate onto which graphene is deposited. By measuring the temperature-dependent deflection...
متن کاملA Fully Transparent Flexible Sensor for Cryogenic Temperatures Based on High Strength Metallurgical Graphene
Low-temperature electronics operating in below zero temperatures or even below the lower limit of the common -65 to 125 °C temperature range are essential in medical diagnostics, in space exploration and aviation, in processing and storage of food and mainly in scientific research, like superconducting materials engineering and their applications-superconducting magnets, superconducting energy ...
متن کامل