Microbial consumption of atmospheric isoprene in a temperate forest soil.

نویسندگان

  • C C Cleveland
  • J B Yavitt
چکیده

Isoprene (2-methyl-1,3 butadiene) is a low-molecular-weight hydrocarbon emitted in large quantities to the atmosphere by vegetation and plays a large role in regulating atmospheric chemistry. Until now, the atmosphere has been considered the only significant sink for isoprene. However, in this study we performed both in situ and in vitro experiments with soil from a temperate forest near Ithaca, N.Y., that indicate that the soil provides a sink for atmospheric isoprene and that the consumption of isoprene is carried out by microorganisms. Consumption occurred rapidly in field chambers (672.60 +/- 30.12 to 2,718.36 +/- 86.40 pmol gdw day) (gdw is grams [dry weight] of soil; values are means +/- standard deviations). Subsequent laboratory experiments confirmed that isoprene loss was due to biological processes: consumption was stopped by autoclaving the soil; consumption rates increased with repeated exposure to isoprene; and consumption showed a temperature response consistent with biological activity (with an optimum temperature of 30 degrees C). Isoprene consumption was diminished under low oxygen conditions (120 +/- 7.44 versus 528.36 +/- 7.68 pmol gdw day under ambient O(2) concentrations) and showed a strong relationship with soil moisture. Isoprene-degrading microorganisms were isolated from the site, and abundance was calculated as 5.8 x 10 +/- 3.2 x 10 cells gdw. Our results indicate that soil may provide a significant biological sink for atmospheric isoprene.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Microbial Consumption of Atmospheric Isoprene in a Temperate Forest Soil

Isoprene (2-methyl-l,3 butadiene) is a low-molecular-weight hydrocarbon emitted in large quantities to the atmosphere by vegetation and plays a large role in regulating atmospheric chemistry. Until now, the atmo­ sphere has been considered the only significant sink for isoprene. However, in this study we performed both in situ and in vitro experiments with soil from a temperate forest near Itha...

متن کامل

The effect of elevated atmospheric CO2 and drought on sources and sinks of isoprene in a temperate and tropical rainforest mesocosm

Isoprene is the most abundant volatile hydrocarbon emitted by many tree species and has a major impact on tropospheric chemistry, leading to formation of pollutants and enhancing the lifetime of methane, a powerful greenhouse gas. Reliable estimates of global isoprene emission from different ecosystems demand a clear understanding of the processes of both production and consumption. Although th...

متن کامل

Analysis of atmospheric inputs of nitrate to a temperate forest ecosystem from <supscr>17</supscr>O isotope ratio measurements

[1] Determining the fate of atmospheric N deposited in forest ecosystems is essential to understanding the ecological impact of increased anthropogenic N deposition. We hypothesize that a significant fraction of soil nitrate (dry deposited HNO3 and wet deposited NO3 ) in northern Michigan is derived from atmospheric deposition. To test this idea, soil, rainfall, and cloud water were sampled in ...

متن کامل

Nitrogen Nutrition of Trees in Temperate Forests—The Significance of Nitrogen Availability in the Pedosphere and Atmosphere

Nitrogen (N) is an essential nutrient that is highly abundant as N2 in the atmosphere and also as various mineral and organic forms in soils. However, soil N bioavailability often limits the net primary productivity of unperturbed temperate forests with low atmospheric N input. This is because most soil N is part of polymeric organic matter, which requires microbial depolymerization and mineral...

متن کامل

Impact of forest vegetation on soil characteristics: a correlation between soil biological and physico-chemical properties

Temperate and dry deciduous forest covers major portion of terrestrial ecosystem in India. The two forest types with different dominant tree species differ in litter quality and root exudates, thereby exerting species-specific impact on soil properties and microbial activity. This study aims to examine the influence of forest type or dominant tree species on soil physico-chemical properties and...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Applied and environmental microbiology

دوره 64 1  شماره 

صفحات  -

تاریخ انتشار 1998