Normal forms for general polynomial matrices
نویسندگان
چکیده
We present an algorithm for the computation of a shifted Popov Normal Form of a rectangular polynomial matrix. For specific input shifts, we obtain methods for computing the matrix greatest common divisor of two matrix polynomials (in normal form) or such polynomial normal form computation as the classical Popov form and the Hermite Normal Form. The method is done by embedding the problem of computing shifted forms into one of computing matrix rational approximants. This has the advantage of allowing for fraction-free computations over integral domains such as Z [z] or K[a1, . . . , an][z]. In the case of rectangular matrix input, the corresponding multipliers for the shifted forms are not unique. We use the concept of minimal matrix approximants to introduce a notion of minimal mutipliers and show how such multipliers are computed by our methods.
منابع مشابه
Some results on the polynomial numerical hulls of matrices
In this note we characterize polynomial numerical hulls of matrices $A in M_n$ such that$A^2$ is Hermitian. Also, we consider normal matrices $A in M_n$ whose $k^{th}$ power are semidefinite. For such matriceswe show that $V^k(A)=sigma(A)$.
متن کاملEla on Classification of Normal Matrices in Indefinite Inner Product Spaces∗
Canonical forms are developed for several sets of matrices that are normal with respect to an indefinite inner product induced by a nonsingular Hermitian, symmetric, or skewsymmetric matrix. The most general result covers the case of polynomially normal matrices, i.e., matrices whose adjoint with respect to the indefinite inner product is a polynomial of the original matrix. From this result, c...
متن کاملOn classification of normal matrices in indefinite inner product spaces
Canonical forms are developed for several sets of matrices that are normal with respect to an indefinite inner product induced by a nonsingular Hermitian, symmetric, or skewsymmetric matrix. The most general result covers the case of polynomially normal matrices, i.e., matrices whose adjoint with respect to the indefinite inner product is a polynomial of the original matrix. From this result, c...
متن کاملFast Parallel Computation of Hermite and Smith Forms of Polynomial Matrices*
Boolean circuits of polynomial size and poly-logarithmic depth are given for computing the Hermite and Smith normal forms of polynomial matrices over finite fields and the field of rational numbers. The circuits for the Smith normal form computation are probabilistic ones and also determine very efficient sequential algorithms. Furthermore, we give a polynomial-time deterministic sequential alg...
متن کاملEla Essential Decomposition of Polynomially Normal Matrices in Real Indefinite Inner Product Spaces∗
Polynomially normal matrices in real indefinite inner product spaces are studied, i.e., matrices whose adjoint with respect to the indefinite inner product is a polynomial in the matrix. The set of these matrices is a subset of indefinite inner product normal matrices that contains all selfadjoint, skew-adjoint, and unitary matrices, but that is small enough such that all elements can be comple...
متن کاملEssential decomposition of polynomially normal matrices in real indefinite inner product spaces
Polynomially normal matrices in real indefinite inner product spaces are studied, i.e., matrices whose adjoint with respect to the indefinite inner product is a polynomial in the matrix. The set of these matrices is a subset of indefinite inner product normal matrices that contains all selfadjoint, skew-adjoint, and unitary matrices, but that is small enough such that all elements can be comple...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- J. Symb. Comput.
دوره 41 شماره
صفحات -
تاریخ انتشار 2006